class: inverse, left, bottom background-image: url(https://images.unsplash.com/photo-1542204165-65bf26472b9b?auto=format&fit=crop&q=80&w=1548&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D) background-size: cover # .Large[# My featurette] ## .small[featuring [{}]() ...] #### .tiny[Gina Reynolds | 2023-10-25 |Image credit: Denise Jans, Upsplash] ??? Title --- ```r library(tidyverse) library(ggcirclepack) # tidytuesday data rladies_chapters_raw <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-11-21/rladies_chapters.csv') %>% mutate(chapter = str_remove(chapter, "rladies-") %>% str_replace_all("-", " ") %>% str_to_title() %>% str_remove("\\s+$")) ``` --- count: false .panel1-feature-auto[ ```r *rladies_chapters_raw ``` ] .panel2-feature-auto[ ``` ## # A tibble: 4,268 × 6 ## id chapter title date location year ## <dbl> <chr> <chr> <date> <chr> <dbl> ## 1 296275584 St Louis "Save the date! Introduction t… 2023-11-30 online 2023 ## 2 296277517 Coventry "An basic introduction: Python… 2023-11-30 online 2023 ## 3 295898711 Baltimore "Holiday graphics and animatio… 2023-11-28 inperson 2023 ## 4 296346610 Philly "TidyTuesday with R-Ladies Phi… 2023-11-14 online 2023 ## 5 296275461 St Louis "Save the date! Introduction t… 2023-11-08 online 2023 ## 6 296424871 Kathmandu "4 days workshop" 2023-11-01 inperson 2023 ## 7 296239571 Taipei "旅遊服務銜接 AIGC 的各種坑" 2023-10-30 inperson 2023 ## 8 296559481 Montreal "RLadies October Meetup - \"R-… 2023-10-30 inperson 2023 ## 9 296677321 Abuja "R-Ladies Abuja and Abuja R us… 2023-10-28 inperson 2023 ## 10 296720878 Sao Paulo "Meetup R-Ladies São Paulo - I… 2023-10-28 inperson 2023 ## # ℹ 4,258 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% * group_by(chapter) ``` ] .panel2-feature-auto[ ``` ## # A tibble: 4,268 × 6 ## # Groups: chapter [209] ## id chapter title date location year ## <dbl> <chr> <chr> <date> <chr> <dbl> ## 1 296275584 St Louis "Save the date! Introduction t… 2023-11-30 online 2023 ## 2 296277517 Coventry "An basic introduction: Python… 2023-11-30 online 2023 ## 3 295898711 Baltimore "Holiday graphics and animatio… 2023-11-28 inperson 2023 ## 4 296346610 Philly "TidyTuesday with R-Ladies Phi… 2023-11-14 online 2023 ## 5 296275461 St Louis "Save the date! Introduction t… 2023-11-08 online 2023 ## 6 296424871 Kathmandu "4 days workshop" 2023-11-01 inperson 2023 ## 7 296239571 Taipei "旅遊服務銜接 AIGC 的各種坑" 2023-10-30 inperson 2023 ## 8 296559481 Montreal "RLadies October Meetup - \"R-… 2023-10-30 inperson 2023 ## 9 296677321 Abuja "R-Ladies Abuja and Abuja R us… 2023-10-28 inperson 2023 ## 10 296720878 Sao Paulo "Meetup R-Ladies São Paulo - I… 2023-10-28 inperson 2023 ## # ℹ 4,258 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% * summarise(first_date = as.Date(min(date)), * last_date = as.Date(max(date)), * tot_meetings = n()) ``` ] .panel2-feature-auto[ ``` ## # A tibble: 209 × 4 ## chapter first_date last_date tot_meetings ## <chr> <date> <date> <int> ## 1 Aarhus 2021-06-16 2021-06-16 1 ## 2 Abuja 2020-03-21 2023-10-28 17 ## 3 Addis Ababa 2018-03-28 2021-03-09 26 ## 4 Adelaide 2017-03-08 2019-10-03 9 ## 5 Aguascalientes 2020-08-13 2020-11-24 5 ## 6 Algiers 2020-06-13 2020-11-24 3 ## 7 Ames 2016-12-15 2021-07-07 86 ## 8 Amsterdam 2018-04-12 2021-09-28 31 ## 9 Ankara 2019-10-12 2021-03-23 16 ## 10 Asuncion 2020-07-11 2020-07-11 1 ## # ℹ 199 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% * arrange(first_date) ``` ] .panel2-feature-auto[ ``` ## # A tibble: 209 × 4 ## chapter first_date last_date tot_meetings ## <chr> <date> <date> <int> ## 1 San Francisco 2012-10-31 2021-09-09 64 ## 2 Tc 2015-04-26 2023-03-02 52 ## 3 London 2016-03-04 2022-10-26 61 ## 4 Rtp 2016-09-22 2023-08-22 74 ## 5 Istanbul 2016-10-01 2021-03-08 36 ## 6 Paris 2016-10-05 2023-10-19 25 ## 7 Boston 2016-10-13 2021-07-29 44 ## 8 La 2016-10-15 2020-07-29 32 ## 9 Melbourne 2016-10-18 2022-11-30 81 ## 10 Madrid 2016-10-24 2022-04-05 51 ## # ℹ 199 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% * mutate(chapter = fct_inorder(chapter)) ``` ] .panel2-feature-auto[ ``` ## # A tibble: 209 × 4 ## chapter first_date last_date tot_meetings ## <fct> <date> <date> <int> ## 1 San Francisco 2012-10-31 2021-09-09 64 ## 2 Tc 2015-04-26 2023-03-02 52 ## 3 London 2016-03-04 2022-10-26 61 ## 4 Rtp 2016-09-22 2023-08-22 74 ## 5 Istanbul 2016-10-01 2021-03-08 36 ## 6 Paris 2016-10-05 2023-10-19 25 ## 7 Boston 2016-10-13 2021-07-29 44 ## 8 La 2016-10-15 2020-07-29 32 ## 9 Melbourne 2016-10-18 2022-11-30 81 ## 10 Madrid 2016-10-24 2022-04-05 51 ## # ℹ 199 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% mutate(chapter = fct_inorder(chapter)) -> *rladies_chapter_df ``` ] .panel2-feature-auto[ ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% mutate(chapter = fct_inorder(chapter)) -> rladies_chapter_df *rladies_chapters_raw ``` ] .panel2-feature-auto[ ``` ## # A tibble: 4,268 × 6 ## id chapter title date location year ## <dbl> <chr> <chr> <date> <chr> <dbl> ## 1 296275584 St Louis "Save the date! Introduction t… 2023-11-30 online 2023 ## 2 296277517 Coventry "An basic introduction: Python… 2023-11-30 online 2023 ## 3 295898711 Baltimore "Holiday graphics and animatio… 2023-11-28 inperson 2023 ## 4 296346610 Philly "TidyTuesday with R-Ladies Phi… 2023-11-14 online 2023 ## 5 296275461 St Louis "Save the date! Introduction t… 2023-11-08 online 2023 ## 6 296424871 Kathmandu "4 days workshop" 2023-11-01 inperson 2023 ## 7 296239571 Taipei "旅遊服務銜接 AIGC 的各種坑" 2023-10-30 inperson 2023 ## 8 296559481 Montreal "RLadies October Meetup - \"R-… 2023-10-30 inperson 2023 ## 9 296677321 Abuja "R-Ladies Abuja and Abuja R us… 2023-10-28 inperson 2023 ## 10 296720878 Sao Paulo "Meetup R-Ladies São Paulo - I… 2023-10-28 inperson 2023 ## # ℹ 4,258 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% mutate(chapter = fct_inorder(chapter)) -> rladies_chapter_df rladies_chapters_raw %>% * mutate(chapter = * factor(chapter, * levels = * levels(rladies_chapter_df$chapter))) ``` ] .panel2-feature-auto[ ``` ## # A tibble: 4,268 × 6 ## id chapter title date location year ## <dbl> <fct> <chr> <date> <chr> <dbl> ## 1 296275584 St Louis "Save the date! Introduction t… 2023-11-30 online 2023 ## 2 296277517 Coventry "An basic introduction: Python… 2023-11-30 online 2023 ## 3 295898711 Baltimore "Holiday graphics and animatio… 2023-11-28 inperson 2023 ## 4 296346610 Philly "TidyTuesday with R-Ladies Phi… 2023-11-14 online 2023 ## 5 296275461 St Louis "Save the date! Introduction t… 2023-11-08 online 2023 ## 6 296424871 Kathmandu "4 days workshop" 2023-11-01 inperson 2023 ## 7 296239571 Taipei "旅遊服務銜接 AIGC 的各種坑" 2023-10-30 inperson 2023 ## 8 296559481 Montreal "RLadies October Meetup - \"R-… 2023-10-30 inperson 2023 ## 9 296677321 Abuja "R-Ladies Abuja and Abuja R us… 2023-10-28 inperson 2023 ## 10 296720878 Sao Paulo "Meetup R-Ladies São Paulo - I… 2023-10-28 inperson 2023 ## # ℹ 4,258 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% mutate(chapter = fct_inorder(chapter)) -> rladies_chapter_df rladies_chapters_raw %>% mutate(chapter = factor(chapter, levels = levels(rladies_chapter_df$chapter))) %>% * group_by(chapter) ``` ] .panel2-feature-auto[ ``` ## # A tibble: 4,268 × 6 ## # Groups: chapter [209] ## id chapter title date location year ## <dbl> <fct> <chr> <date> <chr> <dbl> ## 1 296275584 St Louis "Save the date! Introduction t… 2023-11-30 online 2023 ## 2 296277517 Coventry "An basic introduction: Python… 2023-11-30 online 2023 ## 3 295898711 Baltimore "Holiday graphics and animatio… 2023-11-28 inperson 2023 ## 4 296346610 Philly "TidyTuesday with R-Ladies Phi… 2023-11-14 online 2023 ## 5 296275461 St Louis "Save the date! Introduction t… 2023-11-08 online 2023 ## 6 296424871 Kathmandu "4 days workshop" 2023-11-01 inperson 2023 ## 7 296239571 Taipei "旅遊服務銜接 AIGC 的各種坑" 2023-10-30 inperson 2023 ## 8 296559481 Montreal "RLadies October Meetup - \"R-… 2023-10-30 inperson 2023 ## 9 296677321 Abuja "R-Ladies Abuja and Abuja R us… 2023-10-28 inperson 2023 ## 10 296720878 Sao Paulo "Meetup R-Ladies São Paulo - I… 2023-10-28 inperson 2023 ## # ℹ 4,258 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% mutate(chapter = fct_inorder(chapter)) -> rladies_chapter_df rladies_chapters_raw %>% mutate(chapter = factor(chapter, levels = levels(rladies_chapter_df$chapter))) %>% group_by(chapter) %>% * mutate(meeting_number = rank(date)) ``` ] .panel2-feature-auto[ ``` ## # A tibble: 4,268 × 7 ## # Groups: chapter [209] ## id chapter title date location year meeting_number ## <dbl> <fct> <chr> <date> <chr> <dbl> <dbl> ## 1 296275584 St Louis "Save the date!… 2023-11-30 online 2023 41 ## 2 296277517 Coventry "An basic intro… 2023-11-30 online 2023 15 ## 3 295898711 Baltimore "Holiday graphi… 2023-11-28 inperson 2023 34 ## 4 296346610 Philly "TidyTuesday wi… 2023-11-14 online 2023 83 ## 5 296275461 St Louis "Save the date!… 2023-11-08 online 2023 40 ## 6 296424871 Kathmandu "4 days worksho… 2023-11-01 inperson 2023 6 ## 7 296239571 Taipei "旅遊服務銜接 A… 2023-10-30 inperson 2023 65 ## 8 296559481 Montreal "RLadies Octobe… 2023-10-30 inperson 2023 88 ## 9 296677321 Abuja "R-Ladies Abuja… 2023-10-28 inperson 2023 17 ## 10 296720878 Sao Paulo "Meetup R-Ladie… 2023-10-28 inperson 2023 26 ## # ℹ 4,258 more rows ``` ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% mutate(chapter = fct_inorder(chapter)) -> rladies_chapter_df rladies_chapters_raw %>% mutate(chapter = factor(chapter, levels = levels(rladies_chapter_df$chapter))) %>% group_by(chapter) %>% mutate(meeting_number = rank(date)) -> *meetings_df ``` ] .panel2-feature-auto[ ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% mutate(chapter = fct_inorder(chapter)) -> rladies_chapter_df rladies_chapters_raw %>% mutate(chapter = factor(chapter, levels = levels(rladies_chapter_df$chapter))) %>% group_by(chapter) %>% mutate(meeting_number = rank(date)) -> meetings_df *make_ordinal <- function(x){ * ifelse(x == 1, "1st", * ifelse(x == 2, "2nd", * ifelse(x == 3, "3rd", paste0(x,"th")))) *} ``` ] .panel2-feature-auto[ ] --- count: false .panel1-feature-auto[ ```r rladies_chapters_raw %>% group_by(chapter) %>% summarise(first_date = as.Date(min(date)), last_date = as.Date(max(date)), tot_meetings = n()) %>% arrange(first_date) %>% mutate(chapter = fct_inorder(chapter)) -> rladies_chapter_df rladies_chapters_raw %>% mutate(chapter = factor(chapter, levels = levels(rladies_chapter_df$chapter))) %>% group_by(chapter) %>% mutate(meeting_number = rank(date)) -> meetings_df make_ordinal <- function(x){ ifelse(x == 1, "1st", ifelse(x == 2, "2nd", ifelse(x == 3, "3rd", paste0(x,"th")))) } # test *make_ordinal(x = 1:10) ``` ] .panel2-feature-auto[ ``` ## [1] "1st" "2nd" "3rd" "4th" "5th" "6th" "7th" "8th" "9th" "10th" ``` ] <style> .panel1-feature-auto { color: black; width: 49%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-feature-auto { color: black; width: 49%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-feature-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- --- count: false .panel1-feature2-auto[ ```r *meetings_df ``` ] .panel2-feature2-auto[ ``` ## # A tibble: 4,268 × 7 ## # Groups: chapter [209] ## id chapter title date location year meeting_number ## <dbl> <fct> <chr> <date> <chr> <dbl> <dbl> ## 1 296275584 St Louis "Save the date!… 2023-11-30 online 2023 41 ## 2 296277517 Coventry "An basic intro… 2023-11-30 online 2023 15 ## 3 295898711 Baltimore "Holiday graphi… 2023-11-28 inperson 2023 34 ## 4 296346610 Philly "TidyTuesday wi… 2023-11-14 online 2023 83 ## 5 296275461 St Louis "Save the date!… 2023-11-08 online 2023 40 ## 6 296424871 Kathmandu "4 days worksho… 2023-11-01 inperson 2023 6 ## 7 296239571 Taipei "旅遊服務銜接 A… 2023-10-30 inperson 2023 65 ## 8 296559481 Montreal "RLadies Octobe… 2023-10-30 inperson 2023 88 ## 9 296677321 Abuja "R-Ladies Abuja… 2023-10-28 inperson 2023 17 ## 10 296720878 Sao Paulo "Meetup R-Ladie… 2023-10-28 inperson 2023 26 ## # ℹ 4,258 more rows ``` ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% * ggplot() ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_02_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + * aes(y = as.numeric(chapter), x = date) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_03_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + * geom_point(alpha = .6) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_04_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + geom_point(alpha = .6) + * aes(color = meeting_number) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_05_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + geom_point(alpha = .6) + aes(color = meeting_number) + * geom_text(data = rladies_chapter_df, * aes(x = first_date-days(120), * label = ifelse(chapter == "San Francisco", * "San \nFrancisco", * as.character(chapter))), * color = "grey20", * hjust = 1, * size = 4.5, * lineheight = .7) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_06_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + geom_point(alpha = .6) + aes(color = meeting_number) + geom_text(data = rladies_chapter_df, aes(x = first_date-days(120), label = ifelse(chapter == "San Francisco", "San \nFrancisco", as.character(chapter))), color = "grey20", hjust = 1, size = 4.5, lineheight = .7) + * geom_text(data = rladies_chapter_df, * aes(x = last_date, * label = make_ordinal(tot_meetings)), * color = "grey20", * hjust = -.3, * size = 4.5) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_07_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + geom_point(alpha = .6) + aes(color = meeting_number) + geom_text(data = rladies_chapter_df, aes(x = first_date-days(120), label = ifelse(chapter == "San Francisco", "San \nFrancisco", as.character(chapter))), color = "grey20", hjust = 1, size = 4.5, lineheight = .7) + geom_text(data = rladies_chapter_df, aes(x = last_date, label = make_ordinal(tot_meetings)), color = "grey20", hjust = -.3, size = 4.5) + * theme(axis.text.y = element_blank()) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_08_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + geom_point(alpha = .6) + aes(color = meeting_number) + geom_text(data = rladies_chapter_df, aes(x = first_date-days(120), label = ifelse(chapter == "San Francisco", "San \nFrancisco", as.character(chapter))), color = "grey20", hjust = 1, size = 4.5, lineheight = .7) + geom_text(data = rladies_chapter_df, aes(x = last_date, label = make_ordinal(tot_meetings)), color = "grey20", hjust = -.3, size = 4.5) + theme(axis.text.y = element_blank()) + * scale_color_viridis_c(option = "magma", breaks = c(1, 50, 100), * labels = c("1st", "50th", "100th")) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_09_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + geom_point(alpha = .6) + aes(color = meeting_number) + geom_text(data = rladies_chapter_df, aes(x = first_date-days(120), label = ifelse(chapter == "San Francisco", "San \nFrancisco", as.character(chapter))), color = "grey20", hjust = 1, size = 4.5, lineheight = .7) + geom_text(data = rladies_chapter_df, aes(x = last_date, label = make_ordinal(tot_meetings)), color = "grey20", hjust = -.3, size = 4.5) + theme(axis.text.y = element_blank()) + scale_color_viridis_c(option = "magma", breaks = c(1, 50, 100), labels = c("1st", "50th", "100th")) + * facet_wrap( ~ cut_interval( * as.numeric(chapter), * n = 4), * scales = "free_y", * ncol = 4) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_10_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + geom_point(alpha = .6) + aes(color = meeting_number) + geom_text(data = rladies_chapter_df, aes(x = first_date-days(120), label = ifelse(chapter == "San Francisco", "San \nFrancisco", as.character(chapter))), color = "grey20", hjust = 1, size = 4.5, lineheight = .7) + geom_text(data = rladies_chapter_df, aes(x = last_date, label = make_ordinal(tot_meetings)), color = "grey20", hjust = -.3, size = 4.5) + theme(axis.text.y = element_blank()) + scale_color_viridis_c(option = "magma", breaks = c(1, 50, 100), labels = c("1st", "50th", "100th")) + facet_wrap( ~ cut_interval( as.numeric(chapter), n = 4), scales = "free_y", ncol = 4) + * labs(color = "Meeting\nnumber") ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_11_output-1.png)<!-- --> ] --- count: false .panel1-feature2-auto[ ```r meetings_df %>% ggplot() + aes(y = as.numeric(chapter), x = date) + geom_point(alpha = .6) + aes(color = meeting_number) + geom_text(data = rladies_chapter_df, aes(x = first_date-days(120), label = ifelse(chapter == "San Francisco", "San \nFrancisco", as.character(chapter))), color = "grey20", hjust = 1, size = 4.5, lineheight = .7) + geom_text(data = rladies_chapter_df, aes(x = last_date, label = make_ordinal(tot_meetings)), color = "grey20", hjust = -.3, size = 4.5) + theme(axis.text.y = element_blank()) + scale_color_viridis_c(option = "magma", breaks = c(1, 50, 100), labels = c("1st", "50th", "100th")) + facet_wrap( ~ cut_interval( as.numeric(chapter), n = 4), scales = "free_y", ncol = 4) + labs(color = "Meeting\nnumber") + * scale_x_date(expand = expansion(c(.3,.2))) ``` ] .panel2-feature2-auto[ ![](rladies-on-a-wire_files/figure-html/feature2_auto_12_output-1.png)<!-- --> ] <style> .panel1-feature2-auto { color: black; width: 49%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-feature2-auto { color: black; width: 49%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-feature2-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- ![](rladies-on-a-wire_files/figure-html/feature2-1.png)<!-- --> --- ### Contribute - https://github.com/EvaMaeRey/ggcirclepack --- ### Check out {packcircles} which does the computation in ggcirclepack - https://github.com/mbedward/packcircles --- ### Check out flipbookr, used to build this featurette - https://github.com/EvaMaeRey/flipbookr - discussion: https://github.com/EvaMaeRey/flipbookr/blob/master/docs/draft_jasa_submission.pdf --- ### Check out more featurettes - https://EvaMaeRey.github.io/featurette <style type="text/css"> .remark-code{line-height: 1.5; font-size: 100%} @media print { .has-continuation { display: block; } } </style>