class: inverse, left, bottom background-image: url(https://images.unsplash.com/photo-1561336313-0bd5e0b27ec8?q=80&w=1470&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D) background-size: cover # .Large[# Dec 6th] ## .small[A [{ggsample}](https://github.com/EvaMaeRey/ggsample) feature] #### .tiny[Gina Reynolds | 2023-10-25 |Image credit: René Porter, Upsplash] ??? Title --- count: false .panel1-feature-auto[ ```r # tidytuesday data *library(tidyverse) ``` ] .panel2-feature-auto[ ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) *library(ggsample) ``` ] .panel2-feature-auto[ ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) library(ggsample) *mtcars ``` ] .panel2-feature-auto[ ``` ## mpg cyl disp hp drat wt qsec vs am gear carb ## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 ## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 ## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 ## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 ## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 ## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 ## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 ## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 ## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 ## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 ## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 ## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 ## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 ## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 ## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 ## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 ## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 ## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 ## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 ## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 ## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 ## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 ## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 ## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 ## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 ## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 ## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 ``` ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% * ggplot() ``` ] .panel2-feature-auto[ ![](ggsample_files/figure-html/feature_auto_04_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + * aes(x = wt, y = mpg) ``` ] .panel2-feature-auto[ ![](ggsample_files/figure-html/feature_auto_05_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + * geom_point(alpha = .5) ``` ] .panel2-feature-auto[ ![](ggsample_files/figure-html/feature_auto_06_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + * theme_gray(base_size = 18) ``` ] .panel2-feature-auto[ ![](ggsample_files/figure-html/feature_auto_07_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 18) + * geom_smooth(method = lm, se = F) ``` ] .panel2-feature-auto[ ![](ggsample_files/figure-html/feature_auto_08_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 18) + geom_smooth(method = lm, se = F) + * ggxmean::geom_lm_formula(size = 8) ``` ] .panel2-feature-auto[ ![](ggsample_files/figure-html/feature_auto_09_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 18) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 8) + * coord_cartesian(xlim = c(1,6), * ylim = c(5,35)) ``` ] .panel2-feature-auto[ ![](ggsample_files/figure-html/feature_auto_10_output-1.png)<!-- --> ] <style> .panel1-feature-auto { color: black; width: 53.4545454545454%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-feature-auto { color: black; width: 44.5454545454545%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-feature-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- --- ## Demoing: - ### facet_sample(n_sampled = 15, n_facets = 4) -- - ### facet_sample_prop(n_facets = 9, prop = .3) -- - ### facet_scramble(n_facets = 4) -- - ### facet_bootstrap(n_facets = 9) + geom_count() -- - ### facet_bootstrap(n_facets = **1**) + geom_count() -- *look at individual samples* -- ### Background... mostly borrowing from The facet_* functions mostly borrow from the ggplot2 extension vignette [(extending existing facet function)](https://github.com/tidyverse/ggplot2/blob/5f518d02af27160ab98fed736a472321d72d10d2/vignettes/extending-ggplot2.Rmd#L1028) --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_sample(n_sampled = 15, n_facets = 4) ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_01_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_sample_prop(n_facets = 9, prop = .3) ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_02_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_scramble(n_facets = 4) ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_03_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_bootstrap(n_facets = 9) + geom_count() ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_04_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_bootstrap(n_facets = 1) + geom_count() ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_05_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_bootstrap(n_facets = 1) + geom_count() ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_06_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_bootstrap(n_facets = 1) + geom_count() ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_07_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_bootstrap(n_facets = 1) + geom_count() ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_08_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_bootstrap(n_facets = 1) + geom_count() ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_09_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_bootstrap(n_facets = 1) + geom_count() ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_10_output-1.png)<!-- --> ] --- count: false .panel1-feature1-rotate[ ```r # tidytuesday data library(tidyverse) library(ggsample) mtcars %>% ggplot() + aes(x = wt, y = mpg) + geom_point(alpha = .5) + theme_gray(base_size = 20) + geom_smooth(method = lm, se = F) + ggxmean::geom_lm_formula(size = 5) + coord_cartesian(xlim = c(1,6), ylim = c(5,35)) + * facet_bootstrap(n_facets = 1) + geom_count() ``` ] .panel2-feature1-rotate[ ![](ggsample_files/figure-html/feature1_rotate_11_output-1.png)<!-- --> ] <style> .panel1-feature1-rotate { color: black; width: 55.3913043478261%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-feature1-rotate { color: black; width: 42.6086956521739%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-feature1-rotate { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- ### Contribute - https://github.com/EvaMaeRey/ggsample --- ### Check out flipbookr, used to build this featurette - https://github.com/EvaMaeRey/flipbookr - discussion: https://github.com/EvaMaeRey/flipbookr/blob/master/docs/draft_jasa_submission.pdf --- ### Check out more featurettes - https://EvaMaeRey.github.io/featurette <style type="text/css"> .remark-code{line-height: 1.5; font-size: 130%} @media print { .has-continuation { display: block; } } </style>