class: inverse, left, bottom background-image: url(https://images.unsplash.com/photo-1542204165-65bf26472b9b?auto=format&fit=crop&q=80&w=1548&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D) background-size: cover # .Large[# My featurette] ## .small[featuring [{}]() ...] #### .tiny[Gina Reynolds | 2023-10-25 |Image credit: Denise Jans, Upsplash] ??? Title --- count: false .panel1-feature-auto[ ```r # tidytuesday data *tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" ``` ] .panel2-feature-auto[ ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" *library(tidyverse) ``` ] .panel2-feature-auto[ ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) *library(ggcirclepack) ``` ] .panel2-feature-auto[ ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) *read_csv(tt_url) ``` ] .panel2-feature-auto[ ``` ## # A tibble: 24 × 3 ## Subcategory hoursPerDay uncertainty ## <chr> <dbl> <dbl> ## 1 Active recreation 0.42 0.05 ## 2 Allocation 0.91 0.06 ## 3 Artifacts 0.42 0.02 ## 4 Buildings 0.22 0.08 ## 5 Energy 0.04 0.01 ## 6 Food growth & collection 0.81 0.05 ## 7 Food preparation 0.92 0.07 ## 8 Food processing 0.07 0.01 ## 9 Health care 0.2 0.2 ## 10 Human transportation 0.9 0.22 ## # ℹ 14 more rows ``` ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% * ggplot() ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_05_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + * aes(id = as_factor(Subcategory)) ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_06_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + * geom_circlepack() ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_07_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + * coord_equal() ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_08_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + * aes(fill = hoursPerDay) ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_09_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + aes(fill = hoursPerDay) + * geom_circlepack_text(color = "white") ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_10_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + aes(fill = hoursPerDay) + geom_circlepack_text(color = "white") + * aes(area = hoursPerDay) ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_11_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + aes(fill = hoursPerDay) + geom_circlepack_text(color = "white") + aes(area = hoursPerDay) + * scale_fill_viridis_c(end = .8) ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_12_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + aes(fill = hoursPerDay) + geom_circlepack_text(color = "white") + aes(area = hoursPerDay) + scale_fill_viridis_c(end = .8) + * scale_size_continuous(range = c(0, 6)) ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_13_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + aes(fill = hoursPerDay) + geom_circlepack_text(color = "white") + aes(area = hoursPerDay) + scale_fill_viridis_c(end = .8) + scale_size_continuous(range = c(0, 6)) + * theme_void() ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_14_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + aes(fill = hoursPerDay) + geom_circlepack_text(color = "white") + aes(area = hoursPerDay) + scale_fill_viridis_c(end = .8) + scale_size_continuous(range = c(0, 6)) + theme_void() + * theme(legend.position = "none") ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_15_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + aes(fill = hoursPerDay) + geom_circlepack_text(color = "white") + aes(area = hoursPerDay) + scale_fill_viridis_c(end = .8) + scale_size_continuous(range = c(0, 6)) + theme_void() + theme(legend.position = "none") + * labs(title = "Time spent in a 'Global Human Day'") ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_16_output-1.png)<!-- --> ] --- count: false .panel1-feature-auto[ ```r # tidytuesday data tt_url <- "https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2023/2023-09-12/global_human_day.csv" library(tidyverse) library(ggcirclepack) read_csv(tt_url) %>% ggplot() + aes(id = as_factor(Subcategory)) + geom_circlepack() + coord_equal() + aes(fill = hoursPerDay) + geom_circlepack_text(color = "white") + aes(area = hoursPerDay) + scale_fill_viridis_c(end = .8) + scale_size_continuous(range = c(0, 6)) + theme_void() + theme(legend.position = "none") + labs(title = "Time spent in a 'Global Human Day'") + * theme(text = element_text(size = 18)) ``` ] .panel2-feature-auto[ ![](template_files/figure-html/feature_auto_17_output-1.png)<!-- --> ] <style> .panel1-feature-auto { color: black; width: 49%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-feature-auto { color: black; width: 49%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-feature-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- --- ### Contribute - https://github.com/EvaMaeRey/ggcirclepack --- ### Check out {packcircles} which does the computation in ggcirclepack - https://github.com/mbedward/packcircles --- ### Check out flipbookr, used to build this featurette - https://github.com/EvaMaeRey/flipbookr - discussion: https://github.com/EvaMaeRey/flipbookr/blob/master/docs/draft_jasa_submission.pdf --- ### Check out more featurettes - https://EvaMaeRey.github.io/featurette