library(tidyverse)
# remotes::install_github("EvaMaeRey/ma206data")
library(ma206data)
options(scipen = 10)
prelim_NationalAnthemTimes %>%
ggplot() +
aes(x = year) +
aes(y = time) +
geom_point() +
aes(color = sex) +
aes(shape = genre)
chap2_LaughIncrease %>%
ggplot() +
aes(x = rating_increase) +
geom_dotplot() +
geom_vline(xintercept = 0,
linetype = "dashed")
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
chap3_Hockey2 %>%
ggplot() +
aes(x = margin_victory %>% as.factor()) +
geom_bar()
chap5_Blood %>%
ggplot() +
aes(x = year %>% as.factor(), fill = response) +
geom_bar(position = "fill")
chap5_Gilbert %>%
ggplot() +
aes(x = gilbert_worked, fill = patient) +
geom_bar(position = "fill")
chap6_DungBeetles %>%
ggplot() +
aes(color = cap, x = time) +
geom_point(y = 0, alpha = .7) +
geom_density(alpha = .2, aes(fill = cap)) +
facet_wrap(~cap, ncol = 1) +
ggxmean::geom_x_mean()
chap7_DadJokes %>%
pivot_longer(-1) %>%
mutate(name = fct_rev(name)) %>%
arrange(joke, name) %>%
group_by(joke) %>%
mutate(outcome_diff = lead(value) - value) %>%
ggplot() +
aes(x = name, y = value) +
geom_point() +
geom_line(aes(x = name %>%
as.factor() %>%
as.numeric())) +
aes(group = joke) +
geom_line(aes(color = outcome_diff > 0))
chap7_DadJokes %>%
mutate(diff = laugh_track - no_laugh_track) %>%
ggplot() +
aes(y = joke, x = no_laugh_track, color = diff > 0) +
geom_point(color = "cadetblue") +
geom_segment(aes(xend = laugh_track,
yend = joke), arrow = arrow(length = unit(0.20,"cm"))) +
geom_point(color = "cadetblue4", aes(x = laugh_track))
chap8_Goals %>%
count(gender, goal) %>%
ggplot() +
aes(x = gender, y = n, fill = goal) +
geom_col(position = "fill")
chap8_Goals %>%
count(gender, goal) %>%
group_by(gender) %>%
mutate(percent_within_gender = 100*n/sum(n)) %>%
ggplot() +
aes(x = gender, label = n, fill = percent_within_gender, y = goal) +
geom_text() +
geom_tile(alpha = .6) +
scale_y_discrete(limits = rev)
chap9_Donation %>%
ggplot() +
aes(x = state, y = donation) +
geom_jitter(width = .1) +
ggxmean::geom_xy_means(color = "goldenrod", size = 5)
chap10_DraftLottery %>%
ggplot() +
aes(x = sequential_date, y = draft_number) +
geom_point() +
geom_density_2d_filled(alpha = .4) +
ggxmean:::geom_corrlabel()
chap10_DraftLottery %>%
ggplot() +
aes(x = sequential_date,
y = sample(draft_number)) + # true non association by random reorder
geom_point() +
geom_density_2d_filled(alpha = .4) +
ggxmean:::geom_corrlabel()
chap9_Comprehension %>%
ggplot() +
aes(x = condition, y = comprehension) +
geom_jitter(width = .1) +
ggxmean:::geom_xy_means(color = "goldenrod",
shape = "-", size = 20)
chap10_WimbledonMF %>%
ggplot() +
aes(x = year, y = height_cm, color = sex) +
geom_point(alpha = .5) +
geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'