class: center, middle, inverse, title-slide # A minimal flipbook ## With flipbookr and xaringan ### You! --- count: false .panel1-hi-auto[ ```r *palmerpenguins::penguins ``` ] .panel2-hi-auto[ ``` # A tibble: 344 × 8 species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g <fct> <fct> <dbl> <dbl> <int> <int> 1 Adelie Torgersen 39.1 18.7 181 3750 2 Adelie Torgersen 39.5 17.4 186 3800 3 Adelie Torgersen 40.3 18 195 3250 4 Adelie Torgersen NA NA NA NA 5 Adelie Torgersen 36.7 19.3 193 3450 6 Adelie Torgersen 39.3 20.6 190 3650 7 Adelie Torgersen 38.9 17.8 181 3625 8 Adelie Torgersen 39.2 19.6 195 4675 9 Adelie Torgersen 34.1 18.1 193 3475 10 Adelie Torgersen 42 20.2 190 4250 # … with 334 more rows, and 2 more variables: sex <fct>, year <int> ``` ] --- count: false .panel1-hi-auto[ ```r palmerpenguins::penguins %>% * ggplot() ``` ] .panel2-hi-auto[ ![](extenders_files/figure-html/hi_auto_02_output-1.png)<!-- --> ] --- count: false .panel1-hi-auto[ ```r palmerpenguins::penguins %>% ggplot() + * aes(x = species) ``` ] .panel2-hi-auto[ ![](extenders_files/figure-html/hi_auto_03_output-1.png)<!-- --> ] --- count: false .panel1-hi-auto[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + * aes(fill = species) ``` ] .panel2-hi-auto[ ![](extenders_files/figure-html/hi_auto_04_output-1.png)<!-- --> ] --- count: false .panel1-hi-auto[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + * geom_bar() ``` ] .panel2-hi-auto[ ![](extenders_files/figure-html/hi_auto_05_output-1.png)<!-- --> ] --- count: false .panel1-hi-auto[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + geom_bar() -> *my_plot ``` ] .panel2-hi-auto[ ] --- count: false .panel1-hi-auto[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + geom_bar() -> my_plot *ggtrace::ggtrace_inspect_args( * x = my_plot, * method = ggplot2:::Layer$compute_statistic *) ``` ] .panel2-hi-auto[ ``` $self geom_bar: width = NULL, na.rm = FALSE, orientation = NA stat_count: width = NULL, na.rm = FALSE, orientation = NA position_stack $data fill x PANEL group 1 Adelie 1 1 1 2 Adelie 1 1 1 3 Adelie 1 1 1 4 Adelie 1 1 1 5 Adelie 1 1 1 6 Adelie 1 1 1 7 Adelie 1 1 1 8 Adelie 1 1 1 9 Adelie 1 1 1 10 Adelie 1 1 1 11 Adelie 1 1 1 12 Adelie 1 1 1 13 Adelie 1 1 1 14 Adelie 1 1 1 15 Adelie 1 1 1 16 Adelie 1 1 1 17 Adelie 1 1 1 18 Adelie 1 1 1 19 Adelie 1 1 1 20 Adelie 1 1 1 21 Adelie 1 1 1 22 Adelie 1 1 1 23 Adelie 1 1 1 24 Adelie 1 1 1 25 Adelie 1 1 1 26 Adelie 1 1 1 27 Adelie 1 1 1 28 Adelie 1 1 1 29 Adelie 1 1 1 30 Adelie 1 1 1 31 Adelie 1 1 1 32 Adelie 1 1 1 33 Adelie 1 1 1 34 Adelie 1 1 1 35 Adelie 1 1 1 36 Adelie 1 1 1 37 Adelie 1 1 1 38 Adelie 1 1 1 39 Adelie 1 1 1 40 Adelie 1 1 1 41 Adelie 1 1 1 42 Adelie 1 1 1 43 Adelie 1 1 1 44 Adelie 1 1 1 45 Adelie 1 1 1 46 Adelie 1 1 1 47 Adelie 1 1 1 48 Adelie 1 1 1 49 Adelie 1 1 1 50 Adelie 1 1 1 51 Adelie 1 1 1 52 Adelie 1 1 1 53 Adelie 1 1 1 54 Adelie 1 1 1 55 Adelie 1 1 1 56 Adelie 1 1 1 57 Adelie 1 1 1 58 Adelie 1 1 1 59 Adelie 1 1 1 60 Adelie 1 1 1 61 Adelie 1 1 1 62 Adelie 1 1 1 63 Adelie 1 1 1 64 Adelie 1 1 1 65 Adelie 1 1 1 66 Adelie 1 1 1 67 Adelie 1 1 1 68 Adelie 1 1 1 69 Adelie 1 1 1 70 Adelie 1 1 1 71 Adelie 1 1 1 72 Adelie 1 1 1 73 Adelie 1 1 1 74 Adelie 1 1 1 75 Adelie 1 1 1 76 Adelie 1 1 1 77 Adelie 1 1 1 78 Adelie 1 1 1 79 Adelie 1 1 1 80 Adelie 1 1 1 81 Adelie 1 1 1 82 Adelie 1 1 1 83 Adelie 1 1 1 84 Adelie 1 1 1 85 Adelie 1 1 1 86 Adelie 1 1 1 87 Adelie 1 1 1 88 Adelie 1 1 1 89 Adelie 1 1 1 90 Adelie 1 1 1 91 Adelie 1 1 1 92 Adelie 1 1 1 93 Adelie 1 1 1 94 Adelie 1 1 1 95 Adelie 1 1 1 96 Adelie 1 1 1 97 Adelie 1 1 1 98 Adelie 1 1 1 99 Adelie 1 1 1 100 Adelie 1 1 1 101 Adelie 1 1 1 102 Adelie 1 1 1 103 Adelie 1 1 1 104 Adelie 1 1 1 105 Adelie 1 1 1 106 Adelie 1 1 1 107 Adelie 1 1 1 108 Adelie 1 1 1 109 Adelie 1 1 1 110 Adelie 1 1 1 111 Adelie 1 1 1 112 Adelie 1 1 1 113 Adelie 1 1 1 114 Adelie 1 1 1 115 Adelie 1 1 1 116 Adelie 1 1 1 117 Adelie 1 1 1 118 Adelie 1 1 1 119 Adelie 1 1 1 120 Adelie 1 1 1 121 Adelie 1 1 1 122 Adelie 1 1 1 123 Adelie 1 1 1 124 Adelie 1 1 1 125 Adelie 1 1 1 126 Adelie 1 1 1 127 Adelie 1 1 1 128 Adelie 1 1 1 129 Adelie 1 1 1 130 Adelie 1 1 1 131 Adelie 1 1 1 132 Adelie 1 1 1 133 Adelie 1 1 1 134 Adelie 1 1 1 135 Adelie 1 1 1 136 Adelie 1 1 1 137 Adelie 1 1 1 138 Adelie 1 1 1 139 Adelie 1 1 1 140 Adelie 1 1 1 141 Adelie 1 1 1 142 Adelie 1 1 1 143 Adelie 1 1 1 144 Adelie 1 1 1 145 Adelie 1 1 1 146 Adelie 1 1 1 147 Adelie 1 1 1 148 Adelie 1 1 1 149 Adelie 1 1 1 150 Adelie 1 1 1 151 Adelie 1 1 1 152 Adelie 1 1 1 153 Gentoo 3 1 3 154 Gentoo 3 1 3 155 Gentoo 3 1 3 156 Gentoo 3 1 3 157 Gentoo 3 1 3 158 Gentoo 3 1 3 159 Gentoo 3 1 3 160 Gentoo 3 1 3 161 Gentoo 3 1 3 162 Gentoo 3 1 3 163 Gentoo 3 1 3 164 Gentoo 3 1 3 165 Gentoo 3 1 3 166 Gentoo 3 1 3 167 Gentoo 3 1 3 168 Gentoo 3 1 3 169 Gentoo 3 1 3 170 Gentoo 3 1 3 171 Gentoo 3 1 3 172 Gentoo 3 1 3 173 Gentoo 3 1 3 174 Gentoo 3 1 3 175 Gentoo 3 1 3 176 Gentoo 3 1 3 177 Gentoo 3 1 3 178 Gentoo 3 1 3 179 Gentoo 3 1 3 180 Gentoo 3 1 3 181 Gentoo 3 1 3 182 Gentoo 3 1 3 183 Gentoo 3 1 3 184 Gentoo 3 1 3 185 Gentoo 3 1 3 186 Gentoo 3 1 3 187 Gentoo 3 1 3 188 Gentoo 3 1 3 189 Gentoo 3 1 3 190 Gentoo 3 1 3 191 Gentoo 3 1 3 192 Gentoo 3 1 3 193 Gentoo 3 1 3 194 Gentoo 3 1 3 195 Gentoo 3 1 3 196 Gentoo 3 1 3 197 Gentoo 3 1 3 198 Gentoo 3 1 3 199 Gentoo 3 1 3 200 Gentoo 3 1 3 201 Gentoo 3 1 3 202 Gentoo 3 1 3 203 Gentoo 3 1 3 204 Gentoo 3 1 3 205 Gentoo 3 1 3 206 Gentoo 3 1 3 207 Gentoo 3 1 3 208 Gentoo 3 1 3 209 Gentoo 3 1 3 210 Gentoo 3 1 3 211 Gentoo 3 1 3 212 Gentoo 3 1 3 213 Gentoo 3 1 3 214 Gentoo 3 1 3 215 Gentoo 3 1 3 216 Gentoo 3 1 3 217 Gentoo 3 1 3 218 Gentoo 3 1 3 219 Gentoo 3 1 3 220 Gentoo 3 1 3 221 Gentoo 3 1 3 222 Gentoo 3 1 3 223 Gentoo 3 1 3 224 Gentoo 3 1 3 225 Gentoo 3 1 3 226 Gentoo 3 1 3 227 Gentoo 3 1 3 228 Gentoo 3 1 3 229 Gentoo 3 1 3 230 Gentoo 3 1 3 231 Gentoo 3 1 3 232 Gentoo 3 1 3 233 Gentoo 3 1 3 234 Gentoo 3 1 3 235 Gentoo 3 1 3 236 Gentoo 3 1 3 237 Gentoo 3 1 3 238 Gentoo 3 1 3 239 Gentoo 3 1 3 240 Gentoo 3 1 3 241 Gentoo 3 1 3 242 Gentoo 3 1 3 243 Gentoo 3 1 3 244 Gentoo 3 1 3 245 Gentoo 3 1 3 246 Gentoo 3 1 3 247 Gentoo 3 1 3 248 Gentoo 3 1 3 249 Gentoo 3 1 3 250 Gentoo 3 1 3 251 Gentoo 3 1 3 252 Gentoo 3 1 3 253 Gentoo 3 1 3 254 Gentoo 3 1 3 255 Gentoo 3 1 3 256 Gentoo 3 1 3 257 Gentoo 3 1 3 258 Gentoo 3 1 3 259 Gentoo 3 1 3 260 Gentoo 3 1 3 261 Gentoo 3 1 3 262 Gentoo 3 1 3 263 Gentoo 3 1 3 264 Gentoo 3 1 3 265 Gentoo 3 1 3 266 Gentoo 3 1 3 267 Gentoo 3 1 3 268 Gentoo 3 1 3 269 Gentoo 3 1 3 270 Gentoo 3 1 3 271 Gentoo 3 1 3 272 Gentoo 3 1 3 273 Gentoo 3 1 3 274 Gentoo 3 1 3 275 Gentoo 3 1 3 276 Gentoo 3 1 3 277 Chinstrap 2 1 2 278 Chinstrap 2 1 2 279 Chinstrap 2 1 2 280 Chinstrap 2 1 2 281 Chinstrap 2 1 2 282 Chinstrap 2 1 2 283 Chinstrap 2 1 2 284 Chinstrap 2 1 2 285 Chinstrap 2 1 2 286 Chinstrap 2 1 2 287 Chinstrap 2 1 2 288 Chinstrap 2 1 2 289 Chinstrap 2 1 2 290 Chinstrap 2 1 2 291 Chinstrap 2 1 2 292 Chinstrap 2 1 2 293 Chinstrap 2 1 2 294 Chinstrap 2 1 2 295 Chinstrap 2 1 2 296 Chinstrap 2 1 2 297 Chinstrap 2 1 2 298 Chinstrap 2 1 2 299 Chinstrap 2 1 2 300 Chinstrap 2 1 2 301 Chinstrap 2 1 2 302 Chinstrap 2 1 2 303 Chinstrap 2 1 2 304 Chinstrap 2 1 2 305 Chinstrap 2 1 2 306 Chinstrap 2 1 2 307 Chinstrap 2 1 2 308 Chinstrap 2 1 2 309 Chinstrap 2 1 2 310 Chinstrap 2 1 2 311 Chinstrap 2 1 2 312 Chinstrap 2 1 2 313 Chinstrap 2 1 2 314 Chinstrap 2 1 2 315 Chinstrap 2 1 2 316 Chinstrap 2 1 2 317 Chinstrap 2 1 2 318 Chinstrap 2 1 2 319 Chinstrap 2 1 2 320 Chinstrap 2 1 2 321 Chinstrap 2 1 2 322 Chinstrap 2 1 2 323 Chinstrap 2 1 2 324 Chinstrap 2 1 2 325 Chinstrap 2 1 2 326 Chinstrap 2 1 2 327 Chinstrap 2 1 2 328 Chinstrap 2 1 2 329 Chinstrap 2 1 2 330 Chinstrap 2 1 2 331 Chinstrap 2 1 2 332 Chinstrap 2 1 2 333 Chinstrap 2 1 2 334 Chinstrap 2 1 2 335 Chinstrap 2 1 2 336 Chinstrap 2 1 2 337 Chinstrap 2 1 2 338 Chinstrap 2 1 2 339 Chinstrap 2 1 2 340 Chinstrap 2 1 2 341 Chinstrap 2 1 2 342 Chinstrap 2 1 2 343 Chinstrap 2 1 2 344 Chinstrap 2 1 2 $layout <ggproto object: Class Layout, gg> coord: <ggproto object: Class CoordCartesian, Coord, gg> aspect: function backtransform_range: function clip: on default: TRUE distance: function expand: TRUE is_free: function is_linear: function labels: function limits: list modify_scales: function range: function render_axis_h: function render_axis_v: function render_bg: function render_fg: function setup_data: function setup_layout: function setup_panel_guides: function setup_panel_params: function setup_params: function train_panel_guides: function transform: function super: <ggproto object: Class CoordCartesian, Coord, gg> coord_params: list facet: <ggproto object: Class FacetNull, Facet, gg> compute_layout: function draw_back: function draw_front: function draw_labels: function draw_panels: function finish_data: function init_scales: function map_data: function params: list setup_data: function setup_params: function shrink: TRUE train_scales: function vars: function super: <ggproto object: Class FacetNull, Facet, gg> facet_params: list finish_data: function get_scales: function layout: data.frame map_position: function panel_params: list panel_scales_x: list panel_scales_y: list render: function render_labels: function reset_scales: function setup: function setup_panel_guides: function setup_panel_params: function train_position: function xlabel: function ylabel: function super: <ggproto object: Class Layout, gg> ``` ] --- count: false .panel1-hi-auto[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + geom_bar() -> my_plot ggtrace::ggtrace_inspect_args( x = my_plot, method = ggplot2:::Layer$compute_statistic ) %>% * .$data ``` ] .panel2-hi-auto[ ``` fill x PANEL group 1 Adelie 1 1 1 2 Adelie 1 1 1 3 Adelie 1 1 1 4 Adelie 1 1 1 5 Adelie 1 1 1 6 Adelie 1 1 1 7 Adelie 1 1 1 8 Adelie 1 1 1 9 Adelie 1 1 1 10 Adelie 1 1 1 11 Adelie 1 1 1 12 Adelie 1 1 1 13 Adelie 1 1 1 14 Adelie 1 1 1 15 Adelie 1 1 1 16 Adelie 1 1 1 17 Adelie 1 1 1 18 Adelie 1 1 1 19 Adelie 1 1 1 20 Adelie 1 1 1 21 Adelie 1 1 1 22 Adelie 1 1 1 23 Adelie 1 1 1 24 Adelie 1 1 1 25 Adelie 1 1 1 26 Adelie 1 1 1 27 Adelie 1 1 1 28 Adelie 1 1 1 29 Adelie 1 1 1 30 Adelie 1 1 1 31 Adelie 1 1 1 32 Adelie 1 1 1 33 Adelie 1 1 1 34 Adelie 1 1 1 35 Adelie 1 1 1 36 Adelie 1 1 1 37 Adelie 1 1 1 38 Adelie 1 1 1 39 Adelie 1 1 1 40 Adelie 1 1 1 41 Adelie 1 1 1 42 Adelie 1 1 1 43 Adelie 1 1 1 44 Adelie 1 1 1 45 Adelie 1 1 1 46 Adelie 1 1 1 47 Adelie 1 1 1 48 Adelie 1 1 1 49 Adelie 1 1 1 50 Adelie 1 1 1 51 Adelie 1 1 1 52 Adelie 1 1 1 53 Adelie 1 1 1 54 Adelie 1 1 1 55 Adelie 1 1 1 56 Adelie 1 1 1 57 Adelie 1 1 1 58 Adelie 1 1 1 59 Adelie 1 1 1 60 Adelie 1 1 1 61 Adelie 1 1 1 62 Adelie 1 1 1 63 Adelie 1 1 1 64 Adelie 1 1 1 65 Adelie 1 1 1 66 Adelie 1 1 1 67 Adelie 1 1 1 68 Adelie 1 1 1 69 Adelie 1 1 1 70 Adelie 1 1 1 71 Adelie 1 1 1 72 Adelie 1 1 1 73 Adelie 1 1 1 74 Adelie 1 1 1 75 Adelie 1 1 1 76 Adelie 1 1 1 77 Adelie 1 1 1 78 Adelie 1 1 1 79 Adelie 1 1 1 80 Adelie 1 1 1 81 Adelie 1 1 1 82 Adelie 1 1 1 83 Adelie 1 1 1 84 Adelie 1 1 1 85 Adelie 1 1 1 86 Adelie 1 1 1 87 Adelie 1 1 1 88 Adelie 1 1 1 89 Adelie 1 1 1 90 Adelie 1 1 1 91 Adelie 1 1 1 92 Adelie 1 1 1 93 Adelie 1 1 1 94 Adelie 1 1 1 95 Adelie 1 1 1 96 Adelie 1 1 1 97 Adelie 1 1 1 98 Adelie 1 1 1 99 Adelie 1 1 1 100 Adelie 1 1 1 101 Adelie 1 1 1 102 Adelie 1 1 1 103 Adelie 1 1 1 104 Adelie 1 1 1 105 Adelie 1 1 1 106 Adelie 1 1 1 107 Adelie 1 1 1 108 Adelie 1 1 1 109 Adelie 1 1 1 110 Adelie 1 1 1 111 Adelie 1 1 1 112 Adelie 1 1 1 113 Adelie 1 1 1 114 Adelie 1 1 1 115 Adelie 1 1 1 116 Adelie 1 1 1 117 Adelie 1 1 1 118 Adelie 1 1 1 119 Adelie 1 1 1 120 Adelie 1 1 1 121 Adelie 1 1 1 122 Adelie 1 1 1 123 Adelie 1 1 1 124 Adelie 1 1 1 125 Adelie 1 1 1 126 Adelie 1 1 1 127 Adelie 1 1 1 128 Adelie 1 1 1 129 Adelie 1 1 1 130 Adelie 1 1 1 131 Adelie 1 1 1 132 Adelie 1 1 1 133 Adelie 1 1 1 134 Adelie 1 1 1 135 Adelie 1 1 1 136 Adelie 1 1 1 137 Adelie 1 1 1 138 Adelie 1 1 1 139 Adelie 1 1 1 140 Adelie 1 1 1 141 Adelie 1 1 1 142 Adelie 1 1 1 143 Adelie 1 1 1 144 Adelie 1 1 1 145 Adelie 1 1 1 146 Adelie 1 1 1 147 Adelie 1 1 1 148 Adelie 1 1 1 149 Adelie 1 1 1 150 Adelie 1 1 1 151 Adelie 1 1 1 152 Adelie 1 1 1 153 Gentoo 3 1 3 154 Gentoo 3 1 3 155 Gentoo 3 1 3 156 Gentoo 3 1 3 157 Gentoo 3 1 3 158 Gentoo 3 1 3 159 Gentoo 3 1 3 160 Gentoo 3 1 3 161 Gentoo 3 1 3 162 Gentoo 3 1 3 163 Gentoo 3 1 3 164 Gentoo 3 1 3 165 Gentoo 3 1 3 166 Gentoo 3 1 3 167 Gentoo 3 1 3 168 Gentoo 3 1 3 169 Gentoo 3 1 3 170 Gentoo 3 1 3 171 Gentoo 3 1 3 172 Gentoo 3 1 3 173 Gentoo 3 1 3 174 Gentoo 3 1 3 175 Gentoo 3 1 3 176 Gentoo 3 1 3 177 Gentoo 3 1 3 178 Gentoo 3 1 3 179 Gentoo 3 1 3 180 Gentoo 3 1 3 181 Gentoo 3 1 3 182 Gentoo 3 1 3 183 Gentoo 3 1 3 184 Gentoo 3 1 3 185 Gentoo 3 1 3 186 Gentoo 3 1 3 187 Gentoo 3 1 3 188 Gentoo 3 1 3 189 Gentoo 3 1 3 190 Gentoo 3 1 3 191 Gentoo 3 1 3 192 Gentoo 3 1 3 193 Gentoo 3 1 3 194 Gentoo 3 1 3 195 Gentoo 3 1 3 196 Gentoo 3 1 3 197 Gentoo 3 1 3 198 Gentoo 3 1 3 199 Gentoo 3 1 3 200 Gentoo 3 1 3 201 Gentoo 3 1 3 202 Gentoo 3 1 3 203 Gentoo 3 1 3 204 Gentoo 3 1 3 205 Gentoo 3 1 3 206 Gentoo 3 1 3 207 Gentoo 3 1 3 208 Gentoo 3 1 3 209 Gentoo 3 1 3 210 Gentoo 3 1 3 211 Gentoo 3 1 3 212 Gentoo 3 1 3 213 Gentoo 3 1 3 214 Gentoo 3 1 3 215 Gentoo 3 1 3 216 Gentoo 3 1 3 217 Gentoo 3 1 3 218 Gentoo 3 1 3 219 Gentoo 3 1 3 220 Gentoo 3 1 3 221 Gentoo 3 1 3 222 Gentoo 3 1 3 223 Gentoo 3 1 3 224 Gentoo 3 1 3 225 Gentoo 3 1 3 226 Gentoo 3 1 3 227 Gentoo 3 1 3 228 Gentoo 3 1 3 229 Gentoo 3 1 3 230 Gentoo 3 1 3 231 Gentoo 3 1 3 232 Gentoo 3 1 3 233 Gentoo 3 1 3 234 Gentoo 3 1 3 235 Gentoo 3 1 3 236 Gentoo 3 1 3 237 Gentoo 3 1 3 238 Gentoo 3 1 3 239 Gentoo 3 1 3 240 Gentoo 3 1 3 241 Gentoo 3 1 3 242 Gentoo 3 1 3 243 Gentoo 3 1 3 244 Gentoo 3 1 3 245 Gentoo 3 1 3 246 Gentoo 3 1 3 247 Gentoo 3 1 3 248 Gentoo 3 1 3 249 Gentoo 3 1 3 250 Gentoo 3 1 3 251 Gentoo 3 1 3 252 Gentoo 3 1 3 253 Gentoo 3 1 3 254 Gentoo 3 1 3 255 Gentoo 3 1 3 256 Gentoo 3 1 3 257 Gentoo 3 1 3 258 Gentoo 3 1 3 259 Gentoo 3 1 3 260 Gentoo 3 1 3 261 Gentoo 3 1 3 262 Gentoo 3 1 3 263 Gentoo 3 1 3 264 Gentoo 3 1 3 265 Gentoo 3 1 3 266 Gentoo 3 1 3 267 Gentoo 3 1 3 268 Gentoo 3 1 3 269 Gentoo 3 1 3 270 Gentoo 3 1 3 271 Gentoo 3 1 3 272 Gentoo 3 1 3 273 Gentoo 3 1 3 274 Gentoo 3 1 3 275 Gentoo 3 1 3 276 Gentoo 3 1 3 277 Chinstrap 2 1 2 278 Chinstrap 2 1 2 279 Chinstrap 2 1 2 280 Chinstrap 2 1 2 281 Chinstrap 2 1 2 282 Chinstrap 2 1 2 283 Chinstrap 2 1 2 284 Chinstrap 2 1 2 285 Chinstrap 2 1 2 286 Chinstrap 2 1 2 287 Chinstrap 2 1 2 288 Chinstrap 2 1 2 289 Chinstrap 2 1 2 290 Chinstrap 2 1 2 291 Chinstrap 2 1 2 292 Chinstrap 2 1 2 293 Chinstrap 2 1 2 294 Chinstrap 2 1 2 295 Chinstrap 2 1 2 296 Chinstrap 2 1 2 297 Chinstrap 2 1 2 298 Chinstrap 2 1 2 299 Chinstrap 2 1 2 300 Chinstrap 2 1 2 301 Chinstrap 2 1 2 302 Chinstrap 2 1 2 303 Chinstrap 2 1 2 304 Chinstrap 2 1 2 305 Chinstrap 2 1 2 306 Chinstrap 2 1 2 307 Chinstrap 2 1 2 308 Chinstrap 2 1 2 309 Chinstrap 2 1 2 310 Chinstrap 2 1 2 311 Chinstrap 2 1 2 312 Chinstrap 2 1 2 313 Chinstrap 2 1 2 314 Chinstrap 2 1 2 315 Chinstrap 2 1 2 316 Chinstrap 2 1 2 317 Chinstrap 2 1 2 318 Chinstrap 2 1 2 319 Chinstrap 2 1 2 320 Chinstrap 2 1 2 321 Chinstrap 2 1 2 322 Chinstrap 2 1 2 323 Chinstrap 2 1 2 324 Chinstrap 2 1 2 325 Chinstrap 2 1 2 326 Chinstrap 2 1 2 327 Chinstrap 2 1 2 328 Chinstrap 2 1 2 329 Chinstrap 2 1 2 330 Chinstrap 2 1 2 331 Chinstrap 2 1 2 332 Chinstrap 2 1 2 333 Chinstrap 2 1 2 334 Chinstrap 2 1 2 335 Chinstrap 2 1 2 336 Chinstrap 2 1 2 337 Chinstrap 2 1 2 338 Chinstrap 2 1 2 339 Chinstrap 2 1 2 340 Chinstrap 2 1 2 341 Chinstrap 2 1 2 342 Chinstrap 2 1 2 343 Chinstrap 2 1 2 344 Chinstrap 2 1 2 ``` ] <style> .panel1-hi-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-hi-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-hi-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- count: false .panel1-hi-replace[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + geom_bar() -> my_plot ggtrace::ggtrace_inspect_args( x = my_plot, * method = ggplot2:::Layer$compute_statistic ) %>% .$data ``` ] .panel2-hi-replace[ ``` fill x PANEL group 1 Adelie 1 1 1 2 Adelie 1 1 1 3 Adelie 1 1 1 4 Adelie 1 1 1 5 Adelie 1 1 1 6 Adelie 1 1 1 7 Adelie 1 1 1 8 Adelie 1 1 1 9 Adelie 1 1 1 10 Adelie 1 1 1 11 Adelie 1 1 1 12 Adelie 1 1 1 13 Adelie 1 1 1 14 Adelie 1 1 1 15 Adelie 1 1 1 16 Adelie 1 1 1 17 Adelie 1 1 1 18 Adelie 1 1 1 19 Adelie 1 1 1 20 Adelie 1 1 1 21 Adelie 1 1 1 22 Adelie 1 1 1 23 Adelie 1 1 1 24 Adelie 1 1 1 25 Adelie 1 1 1 26 Adelie 1 1 1 27 Adelie 1 1 1 28 Adelie 1 1 1 29 Adelie 1 1 1 30 Adelie 1 1 1 31 Adelie 1 1 1 32 Adelie 1 1 1 33 Adelie 1 1 1 34 Adelie 1 1 1 35 Adelie 1 1 1 36 Adelie 1 1 1 37 Adelie 1 1 1 38 Adelie 1 1 1 39 Adelie 1 1 1 40 Adelie 1 1 1 41 Adelie 1 1 1 42 Adelie 1 1 1 43 Adelie 1 1 1 44 Adelie 1 1 1 45 Adelie 1 1 1 46 Adelie 1 1 1 47 Adelie 1 1 1 48 Adelie 1 1 1 49 Adelie 1 1 1 50 Adelie 1 1 1 51 Adelie 1 1 1 52 Adelie 1 1 1 53 Adelie 1 1 1 54 Adelie 1 1 1 55 Adelie 1 1 1 56 Adelie 1 1 1 57 Adelie 1 1 1 58 Adelie 1 1 1 59 Adelie 1 1 1 60 Adelie 1 1 1 61 Adelie 1 1 1 62 Adelie 1 1 1 63 Adelie 1 1 1 64 Adelie 1 1 1 65 Adelie 1 1 1 66 Adelie 1 1 1 67 Adelie 1 1 1 68 Adelie 1 1 1 69 Adelie 1 1 1 70 Adelie 1 1 1 71 Adelie 1 1 1 72 Adelie 1 1 1 73 Adelie 1 1 1 74 Adelie 1 1 1 75 Adelie 1 1 1 76 Adelie 1 1 1 77 Adelie 1 1 1 78 Adelie 1 1 1 79 Adelie 1 1 1 80 Adelie 1 1 1 81 Adelie 1 1 1 82 Adelie 1 1 1 83 Adelie 1 1 1 84 Adelie 1 1 1 85 Adelie 1 1 1 86 Adelie 1 1 1 87 Adelie 1 1 1 88 Adelie 1 1 1 89 Adelie 1 1 1 90 Adelie 1 1 1 91 Adelie 1 1 1 92 Adelie 1 1 1 93 Adelie 1 1 1 94 Adelie 1 1 1 95 Adelie 1 1 1 96 Adelie 1 1 1 97 Adelie 1 1 1 98 Adelie 1 1 1 99 Adelie 1 1 1 100 Adelie 1 1 1 101 Adelie 1 1 1 102 Adelie 1 1 1 103 Adelie 1 1 1 104 Adelie 1 1 1 105 Adelie 1 1 1 106 Adelie 1 1 1 107 Adelie 1 1 1 108 Adelie 1 1 1 109 Adelie 1 1 1 110 Adelie 1 1 1 111 Adelie 1 1 1 112 Adelie 1 1 1 113 Adelie 1 1 1 114 Adelie 1 1 1 115 Adelie 1 1 1 116 Adelie 1 1 1 117 Adelie 1 1 1 118 Adelie 1 1 1 119 Adelie 1 1 1 120 Adelie 1 1 1 121 Adelie 1 1 1 122 Adelie 1 1 1 123 Adelie 1 1 1 124 Adelie 1 1 1 125 Adelie 1 1 1 126 Adelie 1 1 1 127 Adelie 1 1 1 128 Adelie 1 1 1 129 Adelie 1 1 1 130 Adelie 1 1 1 131 Adelie 1 1 1 132 Adelie 1 1 1 133 Adelie 1 1 1 134 Adelie 1 1 1 135 Adelie 1 1 1 136 Adelie 1 1 1 137 Adelie 1 1 1 138 Adelie 1 1 1 139 Adelie 1 1 1 140 Adelie 1 1 1 141 Adelie 1 1 1 142 Adelie 1 1 1 143 Adelie 1 1 1 144 Adelie 1 1 1 145 Adelie 1 1 1 146 Adelie 1 1 1 147 Adelie 1 1 1 148 Adelie 1 1 1 149 Adelie 1 1 1 150 Adelie 1 1 1 151 Adelie 1 1 1 152 Adelie 1 1 1 153 Gentoo 3 1 3 154 Gentoo 3 1 3 155 Gentoo 3 1 3 156 Gentoo 3 1 3 157 Gentoo 3 1 3 158 Gentoo 3 1 3 159 Gentoo 3 1 3 160 Gentoo 3 1 3 161 Gentoo 3 1 3 162 Gentoo 3 1 3 163 Gentoo 3 1 3 164 Gentoo 3 1 3 165 Gentoo 3 1 3 166 Gentoo 3 1 3 167 Gentoo 3 1 3 168 Gentoo 3 1 3 169 Gentoo 3 1 3 170 Gentoo 3 1 3 171 Gentoo 3 1 3 172 Gentoo 3 1 3 173 Gentoo 3 1 3 174 Gentoo 3 1 3 175 Gentoo 3 1 3 176 Gentoo 3 1 3 177 Gentoo 3 1 3 178 Gentoo 3 1 3 179 Gentoo 3 1 3 180 Gentoo 3 1 3 181 Gentoo 3 1 3 182 Gentoo 3 1 3 183 Gentoo 3 1 3 184 Gentoo 3 1 3 185 Gentoo 3 1 3 186 Gentoo 3 1 3 187 Gentoo 3 1 3 188 Gentoo 3 1 3 189 Gentoo 3 1 3 190 Gentoo 3 1 3 191 Gentoo 3 1 3 192 Gentoo 3 1 3 193 Gentoo 3 1 3 194 Gentoo 3 1 3 195 Gentoo 3 1 3 196 Gentoo 3 1 3 197 Gentoo 3 1 3 198 Gentoo 3 1 3 199 Gentoo 3 1 3 200 Gentoo 3 1 3 201 Gentoo 3 1 3 202 Gentoo 3 1 3 203 Gentoo 3 1 3 204 Gentoo 3 1 3 205 Gentoo 3 1 3 206 Gentoo 3 1 3 207 Gentoo 3 1 3 208 Gentoo 3 1 3 209 Gentoo 3 1 3 210 Gentoo 3 1 3 211 Gentoo 3 1 3 212 Gentoo 3 1 3 213 Gentoo 3 1 3 214 Gentoo 3 1 3 215 Gentoo 3 1 3 216 Gentoo 3 1 3 217 Gentoo 3 1 3 218 Gentoo 3 1 3 219 Gentoo 3 1 3 220 Gentoo 3 1 3 221 Gentoo 3 1 3 222 Gentoo 3 1 3 223 Gentoo 3 1 3 224 Gentoo 3 1 3 225 Gentoo 3 1 3 226 Gentoo 3 1 3 227 Gentoo 3 1 3 228 Gentoo 3 1 3 229 Gentoo 3 1 3 230 Gentoo 3 1 3 231 Gentoo 3 1 3 232 Gentoo 3 1 3 233 Gentoo 3 1 3 234 Gentoo 3 1 3 235 Gentoo 3 1 3 236 Gentoo 3 1 3 237 Gentoo 3 1 3 238 Gentoo 3 1 3 239 Gentoo 3 1 3 240 Gentoo 3 1 3 241 Gentoo 3 1 3 242 Gentoo 3 1 3 243 Gentoo 3 1 3 244 Gentoo 3 1 3 245 Gentoo 3 1 3 246 Gentoo 3 1 3 247 Gentoo 3 1 3 248 Gentoo 3 1 3 249 Gentoo 3 1 3 250 Gentoo 3 1 3 251 Gentoo 3 1 3 252 Gentoo 3 1 3 253 Gentoo 3 1 3 254 Gentoo 3 1 3 255 Gentoo 3 1 3 256 Gentoo 3 1 3 257 Gentoo 3 1 3 258 Gentoo 3 1 3 259 Gentoo 3 1 3 260 Gentoo 3 1 3 261 Gentoo 3 1 3 262 Gentoo 3 1 3 263 Gentoo 3 1 3 264 Gentoo 3 1 3 265 Gentoo 3 1 3 266 Gentoo 3 1 3 267 Gentoo 3 1 3 268 Gentoo 3 1 3 269 Gentoo 3 1 3 270 Gentoo 3 1 3 271 Gentoo 3 1 3 272 Gentoo 3 1 3 273 Gentoo 3 1 3 274 Gentoo 3 1 3 275 Gentoo 3 1 3 276 Gentoo 3 1 3 277 Chinstrap 2 1 2 278 Chinstrap 2 1 2 279 Chinstrap 2 1 2 280 Chinstrap 2 1 2 281 Chinstrap 2 1 2 282 Chinstrap 2 1 2 283 Chinstrap 2 1 2 284 Chinstrap 2 1 2 285 Chinstrap 2 1 2 286 Chinstrap 2 1 2 287 Chinstrap 2 1 2 288 Chinstrap 2 1 2 289 Chinstrap 2 1 2 290 Chinstrap 2 1 2 291 Chinstrap 2 1 2 292 Chinstrap 2 1 2 293 Chinstrap 2 1 2 294 Chinstrap 2 1 2 295 Chinstrap 2 1 2 296 Chinstrap 2 1 2 297 Chinstrap 2 1 2 298 Chinstrap 2 1 2 299 Chinstrap 2 1 2 300 Chinstrap 2 1 2 301 Chinstrap 2 1 2 302 Chinstrap 2 1 2 303 Chinstrap 2 1 2 304 Chinstrap 2 1 2 305 Chinstrap 2 1 2 306 Chinstrap 2 1 2 307 Chinstrap 2 1 2 308 Chinstrap 2 1 2 309 Chinstrap 2 1 2 310 Chinstrap 2 1 2 311 Chinstrap 2 1 2 312 Chinstrap 2 1 2 313 Chinstrap 2 1 2 314 Chinstrap 2 1 2 315 Chinstrap 2 1 2 316 Chinstrap 2 1 2 317 Chinstrap 2 1 2 318 Chinstrap 2 1 2 319 Chinstrap 2 1 2 320 Chinstrap 2 1 2 321 Chinstrap 2 1 2 322 Chinstrap 2 1 2 323 Chinstrap 2 1 2 324 Chinstrap 2 1 2 325 Chinstrap 2 1 2 326 Chinstrap 2 1 2 327 Chinstrap 2 1 2 328 Chinstrap 2 1 2 329 Chinstrap 2 1 2 330 Chinstrap 2 1 2 331 Chinstrap 2 1 2 332 Chinstrap 2 1 2 333 Chinstrap 2 1 2 334 Chinstrap 2 1 2 335 Chinstrap 2 1 2 336 Chinstrap 2 1 2 337 Chinstrap 2 1 2 338 Chinstrap 2 1 2 339 Chinstrap 2 1 2 340 Chinstrap 2 1 2 341 Chinstrap 2 1 2 342 Chinstrap 2 1 2 343 Chinstrap 2 1 2 344 Chinstrap 2 1 2 ``` ] --- count: false .panel1-hi-replace[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + geom_bar() -> my_plot ggtrace::ggtrace_inspect_args( x = my_plot, * method = ggplot2:::Layer$compute_aesthetics ) %>% .$data ``` ] .panel2-hi-replace[ ``` # A tibble: 344 × 9 species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g <fct> <fct> <dbl> <dbl> <int> <int> 1 Adelie Torgersen 39.1 18.7 181 3750 2 Adelie Torgersen 39.5 17.4 186 3800 3 Adelie Torgersen 40.3 18 195 3250 4 Adelie Torgersen NA NA NA NA 5 Adelie Torgersen 36.7 19.3 193 3450 6 Adelie Torgersen 39.3 20.6 190 3650 7 Adelie Torgersen 38.9 17.8 181 3625 8 Adelie Torgersen 39.2 19.6 195 4675 9 Adelie Torgersen 34.1 18.1 193 3475 10 Adelie Torgersen 42 20.2 190 4250 # … with 334 more rows, and 3 more variables: sex <fct>, year <int>, # PANEL <fct> ``` ] --- count: false .panel1-hi-replace[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + geom_bar() -> my_plot ggtrace::ggtrace_inspect_args( x = my_plot, * method = ggplot2:::Layer$compute_position ) %>% .$data ``` ] .panel2-hi-replace[ ``` y count prop x flipped_aes fill PANEL group ymin ymax xmin xmax 1 152 152 1 1 FALSE Adelie 1 1 0 152 0.55 1.45 2 68 68 1 2 FALSE Chinstrap 1 2 0 68 1.55 2.45 3 124 124 1 3 FALSE Gentoo 1 3 0 124 2.55 3.45 ``` ] --- count: false .panel1-hi-replace[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + geom_bar() -> my_plot ggtrace::ggtrace_inspect_args( x = my_plot, * method = ggplot2:::Layer$compute_geom_1 ) %>% .$data ``` ] .panel2-hi-replace[ ``` y count prop x width flipped_aes fill PANEL group 1 152 152 1 1 0.9 FALSE Adelie 1 1 2 68 68 1 2 0.9 FALSE Chinstrap 1 2 3 124 124 1 3 0.9 FALSE Gentoo 1 3 ``` ] --- count: false .panel1-hi-replace[ ```r palmerpenguins::penguins %>% ggplot() + aes(x = species) + aes(fill = species) + geom_bar() -> my_plot ggtrace::ggtrace_inspect_args( x = my_plot, * method = ggplot2:::Layer$compute_geom_2 ) %>% .$data ``` ] .panel2-hi-replace[ ``` fill y count prop x flipped_aes PANEL group ymin ymax xmin xmax 1 #F8766D 152 152 1 1 FALSE 1 1 0 152 0.55 1.45 2 #00BA38 68 68 1 2 FALSE 1 2 0 68 1.55 2.45 3 #619CFF 124 124 1 3 FALSE 1 3 0 124 2.55 3.45 ``` ] <style> .panel1-hi-replace { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-hi-replace { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-hi-replace { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> <!-- adjust font size in this css code chunk, currently 80 --> --- count: false .panel1-intro-auto[ ```r *t <- seq(5, -1, length.out = 1000) * pi ``` ] .panel2-intro-auto[ ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi *paste( * "Like a circle in a spiral, like a wheel within a wheel,", * "never ending or beginning on an ever spinning reel" *) ``` ] .panel2-intro-auto[ ``` [1] "Like a circle in a spiral, like a wheel within a wheel, never ending or beginning on an ever spinning reel" ``` ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi paste( "Like a circle in a spiral, like a wheel within a wheel,", "never ending or beginning on an ever spinning reel" ) -> *rhyme ``` ] .panel2-intro-auto[ ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi paste( "Like a circle in a spiral, like a wheel within a wheel,", "never ending or beginning on an ever spinning reel" ) -> rhyme *data.frame( * x = sin(t) * 1000:1, * y = cos(t) * 1000:1 *) ``` ] .panel2-intro-auto[ ``` x y 1 6.123234e-13 -1000.0000000 2 1.884844e+01 -998.8221746 3 3.765244e+01 -997.2894735 4 5.640532e+01 -995.4031542 5 7.510046e+01 -993.1645994 6 9.373123e+01 -990.5753164 7 1.122911e+02 -987.6369365 8 1.307734e+02 -984.3512138 9 1.491718e+02 -980.7200249 10 1.674798e+02 -976.7453672 11 1.856910e+02 -972.4293586 12 2.037990e+02 -967.7742362 13 2.217975e+02 -962.7823554 14 2.396803e+02 -957.4561885 15 2.574412e+02 -951.7983240 16 2.750739e+02 -945.8114651 17 2.925726e+02 -939.4984287 18 3.099310e+02 -932.8621441 19 3.271433e+02 -925.9056514 20 3.442035e+02 -918.6321010 21 3.611059e+02 -911.0447511 22 3.778446e+02 -903.1469673 23 3.944140e+02 -894.9422206 24 4.108085e+02 -886.4340862 25 4.270225e+02 -877.6262417 26 4.430505e+02 -868.5224661 27 4.588872e+02 -859.1266375 28 4.745272e+02 -849.4427321 29 4.899653e+02 -839.4748222 30 5.051965e+02 -829.2270748 31 5.202155e+02 -818.7037495 32 5.350175e+02 -807.9091973 33 5.495976e+02 -796.8478585 34 5.639509e+02 -785.5242608 35 5.780728e+02 -773.9430177 36 5.919587e+02 -762.1088267 37 6.056041e+02 -750.0264672 38 6.190045e+02 -737.7007987 39 6.321556e+02 -725.1367591 40 6.450532e+02 -712.3393621 41 6.576932e+02 -699.3136962 42 6.700716e+02 -686.0649216 43 6.821844e+02 -672.5982690 44 6.940279e+02 -658.9190374 45 7.055983e+02 -645.0325917 46 7.168921e+02 -630.9443608 47 7.279057e+02 -616.6598358 48 7.386357e+02 -602.1845672 49 7.490790e+02 -587.5241636 50 7.592323e+02 -572.6842887 51 7.690926e+02 -557.6706597 52 7.786569e+02 -542.4890450 53 7.879225e+02 -527.1452618 54 7.968866e+02 -511.6451740 55 8.055466e+02 -495.9946902 56 8.139000e+02 -480.1997610 57 8.219445e+02 -464.2663771 58 8.296778e+02 -448.2005668 59 8.370978e+02 -432.0083940 60 8.442025e+02 -415.6959557 61 8.509900e+02 -399.2693797 62 8.574585e+02 -382.7348226 63 8.636063e+02 -366.0984670 64 8.694320e+02 -349.3665197 65 8.749341e+02 -332.5452090 66 8.801113e+02 -315.6407827 67 8.849624e+02 -298.6595055 68 8.894864e+02 -281.6076570 69 8.936824e+02 -264.4915289 70 8.975495e+02 -247.3174232 71 9.010870e+02 -230.0916496 72 9.042944e+02 -212.8205233 73 9.071713e+02 -195.5103626 74 9.097172e+02 -178.1674864 75 9.119320e+02 -160.7982125 76 9.138156e+02 -143.4088547 77 9.153680e+02 -126.0057207 78 9.165894e+02 -108.5951098 79 9.174800e+02 -91.1833109 80 9.180403e+02 -73.7765998 81 9.182707e+02 -56.3812370 82 9.181719e+02 -39.0034657 83 9.177447e+02 -21.6495096 84 9.169898e+02 -4.3255702 85 9.159083e+02 12.9621749 86 9.145012e+02 30.2075745 87 9.127699e+02 47.4045061 88 9.107155e+02 64.5468774 89 9.083396e+02 81.6286295 90 9.056436e+02 98.6437380 91 9.026294e+02 115.5862160 92 8.992986e+02 132.4501155 93 8.956531e+02 149.2295299 94 8.916950e+02 165.9185961 95 8.874264e+02 182.5114963 96 8.828494e+02 199.0024601 97 8.779664e+02 215.3857666 98 8.727798e+02 231.6557465 99 8.672922e+02 247.8067835 100 8.615062e+02 263.8333169 101 8.554246e+02 279.7298433 102 8.490501e+02 295.4909183 103 8.423858e+02 311.1111585 104 8.354347e+02 326.5852433 105 8.281998e+02 341.9079167 106 8.206846e+02 357.0739894 107 8.128922e+02 372.0783400 108 8.048261e+02 386.9159169 109 7.964899e+02 401.5817404 110 7.878870e+02 416.0709038 111 7.790214e+02 430.3785754 112 7.698966e+02 444.5000000 113 7.605166e+02 458.4305004 114 7.508853e+02 472.1654791 115 7.410068e+02 485.7004195 116 7.308852e+02 499.0308879 117 7.205247e+02 512.1525345 118 7.099295e+02 525.0610947 119 6.991040e+02 537.7523910 120 6.880526e+02 550.2223340 121 6.767798e+02 562.4669238 122 6.652903e+02 574.4822509 123 6.535885e+02 586.2644982 124 6.416793e+02 597.8099414 125 6.295673e+02 609.1149506 126 6.172574e+02 620.1759915 127 6.047546e+02 630.9896261 128 5.920637e+02 641.5525140 129 5.791897e+02 651.8614134 130 5.661377e+02 661.9131820 131 5.529129e+02 671.7047780 132 5.395204e+02 681.2332609 133 5.259654e+02 690.4957925 134 5.122531e+02 699.4896375 135 4.983889e+02 708.2121645 136 4.843782e+02 716.6608466 137 4.702263e+02 724.8332621 138 4.559386e+02 732.7270951 139 4.415206e+02 740.3401363 140 4.269779e+02 747.6702836 141 4.123160e+02 754.7155421 142 3.975403e+02 761.4740253 143 3.826566e+02 767.9439552 144 3.676704e+02 774.1236626 145 3.525875e+02 780.0115878 146 3.374134e+02 785.6062805 147 3.221538e+02 790.9064006 148 3.068145e+02 795.9107179 149 2.914012e+02 800.6181129 150 2.759196e+02 805.0275763 151 2.603754e+02 809.1382097 152 2.447745e+02 812.9492253 153 2.291226e+02 816.4599461 154 2.134254e+02 819.6698061 155 1.976888e+02 822.5783496 156 1.819185e+02 825.1852319 157 1.661203e+02 827.4902189 158 1.502999e+02 829.4931865 159 1.344631e+02 831.1941211 160 1.186158e+02 832.5931188 161 1.027635e+02 833.6903855 162 8.691215e+01 834.4862363 163 7.106736e+01 834.9810954 164 5.523488e+01 835.1754953 165 3.942038e+01 835.0700769 166 2.362955e+01 834.6655884 167 7.868016e+00 833.9628855 168 -7.858582e+00 832.9629300 169 -2.354465e+01 831.6667899 170 -3.918462e+01 830.0756386 171 -5.477294e+01 828.1907540 172 -7.030411e+01 826.0135180 173 -8.577266e+01 823.5454156 174 -1.011731e+02 820.7880343 175 -1.165001e+02 817.7430632 176 -1.317483e+02 814.4122920 177 -1.469123e+02 810.7976105 178 -1.619869e+02 806.9010073 179 -1.769669e+02 802.7245688 180 -1.918469e+02 798.2704787 181 -2.066220e+02 793.5410165 182 -2.212870e+02 788.5385565 183 -2.358369e+02 783.2655669 184 -2.502667e+02 777.7246086 185 -2.645715e+02 771.9183341 186 -2.787464e+02 765.8494859 187 -2.927866e+02 759.5208961 188 -3.066874e+02 752.9354844 189 -3.204440e+02 746.0962570 190 -3.340519e+02 739.0063057 191 -3.475065e+02 731.6688060 192 -3.608033e+02 724.0870160 193 -3.739378e+02 716.2642753 194 -3.869058e+02 708.2040029 195 -3.997029e+02 699.9096964 196 -4.123250e+02 691.3849301 197 -4.247678e+02 682.6333539 198 -4.370274e+02 673.6586915 199 -4.490998e+02 664.4647387 200 -4.609810e+02 655.0553623 201 -4.726672e+02 645.4344983 202 -4.841548e+02 635.6061500 203 -4.954399e+02 625.5743869 204 -5.065191e+02 615.3433426 205 -5.173888e+02 604.9172134 206 -5.280456e+02 594.3002565 207 -5.384863e+02 583.4967882 208 -5.487075e+02 572.5111825 209 -5.587062e+02 561.3478689 210 -5.684791e+02 550.0113310 211 -5.780235e+02 538.5061046 212 -5.873364e+02 526.8367757 213 -5.964149e+02 515.0079792 214 -6.052565e+02 503.0243966 215 -6.138585e+02 490.8907543 216 -6.222184e+02 478.6118219 217 -6.303338e+02 466.1924102 218 -6.382023e+02 453.6373693 219 -6.458217e+02 440.9515869 220 -6.531900e+02 428.1399861 221 -6.603050e+02 415.2075239 222 -6.671649e+02 402.1591890 223 -6.737678e+02 389.0000000 224 -6.801119e+02 375.7350035 225 -6.861957e+02 362.3692720 226 -6.920175e+02 348.9079022 227 -6.975760e+02 335.3560131 228 -7.028699e+02 321.7187436 229 -7.078978e+02 308.0012512 230 -7.126586e+02 294.2087096 231 -7.171513e+02 280.3463069 232 -7.213749e+02 266.4192437 233 -7.253287e+02 252.4327311 234 -7.290118e+02 238.3919887 235 -7.324237e+02 224.3022428 236 -7.355638e+02 210.1687243 237 -7.384317e+02 195.9966670 238 -7.410269e+02 181.7913053 239 -7.433494e+02 167.5578725 240 -7.453990e+02 153.3015990 241 -7.471755e+02 139.0277101 242 -7.486792e+02 124.7414242 243 -7.499102e+02 110.4479511 244 -7.508686e+02 96.1524895 245 -7.515550e+02 81.8602261 246 -7.519697e+02 67.5763325 247 -7.521133e+02 53.3059645 248 -7.519865e+02 39.0542594 249 -7.515901e+02 24.8263345 250 -7.509248e+02 10.6272853 251 -7.499917e+02 -3.5378164 252 -7.487917e+02 -17.6639245 253 -7.473260e+02 -31.7460200 254 -7.455959e+02 -45.7791131 255 -7.436027e+02 -59.7582448 256 -7.413477e+02 -73.6784888 257 -7.388326e+02 -87.5349531 258 -7.360589e+02 -101.3227819 259 -7.330283e+02 -115.0371570 260 -7.297425e+02 -128.6732997 261 -7.262036e+02 -142.2264724 262 -7.224133e+02 -155.6919805 263 -7.183738e+02 -169.0651735 264 -7.140872e+02 -182.3414471 265 -7.095558e+02 -195.5162443 266 -7.047817e+02 -208.5850577 267 -6.997675e+02 -221.5434300 268 -6.945155e+02 -234.3869567 269 -6.890283e+02 -247.1112866 270 -6.833086e+02 -259.7121237 271 -6.773590e+02 -272.1852288 272 -6.711823e+02 -284.5264205 273 -6.647814e+02 -296.7315770 274 -6.581593e+02 -308.7966373 275 -6.513188e+02 -320.7176024 276 -6.442632e+02 -332.4905368 277 -6.369955e+02 -344.1115699 278 -6.295189e+02 -355.5768969 279 -6.218368e+02 -366.8827804 280 -6.139525e+02 -378.0255514 281 -6.058694e+02 -389.0016107 282 -5.975910e+02 -399.8074295 283 -5.891208e+02 -410.4395514 284 -5.804625e+02 -420.8945926 285 -5.716197e+02 -431.1692436 286 -5.625961e+02 -441.2602699 287 -5.533955e+02 -451.1645131 288 -5.440217e+02 -460.8788919 289 -5.344787e+02 -470.4004031 290 -5.247703e+02 -479.7261221 291 -5.149005e+02 -488.8532044 292 -5.048734e+02 -497.7788860 293 -4.946931e+02 -506.5004843 294 -4.843636e+02 -515.0153992 295 -4.738892e+02 -523.3211131 296 -4.632741e+02 -531.4151925 297 -4.525225e+02 -539.2952880 298 -4.416387e+02 -546.9591353 299 -4.306270e+02 -554.4045558 300 -4.194918e+02 -561.6294569 301 -4.082375e+02 -568.6318330 302 -3.968685e+02 -575.4097656 303 -3.853893e+02 -581.9614239 304 -3.738043e+02 -588.2850654 305 -3.621182e+02 -594.3790361 306 -3.503353e+02 -600.2417710 307 -3.384603e+02 -605.8717945 308 -3.264977e+02 -611.2677205 309 -3.144522e+02 -616.4282529 310 -3.023284e+02 -621.3521855 311 -2.901309e+02 -626.0384027 312 -2.778643e+02 -630.4858793 313 -2.655333e+02 -634.6936808 314 -2.531426e+02 -638.6609632 315 -2.406969e+02 -642.3869738 316 -2.282008e+02 -645.8710501 317 -2.156590e+02 -649.1126211 318 -2.030763e+02 -652.1112061 319 -1.904573e+02 -654.8664154 320 -1.778067e+02 -657.3779499 321 -1.651293e+02 -659.6456010 322 -1.524297e+02 -661.6692503 323 -1.397126e+02 -663.4488697 324 -1.269826e+02 -664.9845210 325 -1.142446e+02 -666.2763554 326 -1.015030e+02 -667.3246137 327 -8.876262e+01 -668.1296255 328 -7.602805e+01 -668.6918091 329 -6.330390e+01 -669.0116710 330 -5.059479e+01 -669.0898054 331 -3.790528e+01 -668.9268940 332 -2.523996e+01 -668.5237052 333 -1.260336e+01 -667.8810937 334 2.450518e-13 -667.0000000 335 1.256562e+01 -665.8814497 336 2.508905e+01 -664.5265530 337 3.756583e+01 -662.9365039 338 4.999157e+01 -661.1125797 339 6.236188e+01 -659.0561401 340 7.467242e+01 -656.7686268 341 8.691889e+01 -654.2515621 342 9.909701e+01 -651.5065488 343 1.112025e+02 -648.5352690 344 1.232313e+02 -645.3394834 345 1.351791e+02 -641.9210303 346 1.470419e+02 -638.2818247 347 1.588155e+02 -634.4238574 348 1.704960e+02 -630.3491943 349 1.820794e+02 -626.0599749 350 1.935617e+02 -621.5584117 351 2.049391e+02 -616.8467891 352 2.162077e+02 -611.9274621 353 2.273638e+02 -606.8028557 354 2.384036e+02 -601.4754632 355 2.493234e+02 -595.9478456 356 2.601197e+02 -590.2226301 357 2.707888e+02 -584.3025092 358 2.813273e+02 -578.1902392 359 2.917317e+02 -571.8886392 360 3.019986e+02 -565.4005900 361 3.121248e+02 -558.7290324 362 3.221068e+02 -551.8769665 363 3.319416e+02 -544.8474497 364 3.416261e+02 -537.6435963 365 3.511570e+02 -530.2685753 366 3.605315e+02 -522.7256096 367 3.697465e+02 -515.0179745 368 3.787993e+02 -507.1489961 369 3.876870e+02 -499.1220502 370 3.964068e+02 -490.9405610 371 4.049562e+02 -482.6079992 372 4.133325e+02 -474.1278809 373 4.215332e+02 -465.5037663 374 4.295559e+02 -456.7392578 375 4.373981e+02 -447.8379989 376 4.450577e+02 -438.8036724 377 4.525323e+02 -429.6399993 378 4.598198e+02 -420.3507371 379 4.669182e+02 -410.9396779 380 4.738254e+02 -401.4106478 381 4.805395e+02 -391.7675044 382 4.870587e+02 -382.0141358 383 4.933813e+02 -372.1544589 384 4.995054e+02 -362.1924179 385 5.054296e+02 -352.1319828 386 5.111523e+02 -341.9771477 387 5.166720e+02 -331.7319291 388 5.219874e+02 -321.4003648 389 5.270971e+02 -310.9865119 390 5.320001e+02 -300.4944454 391 5.366951e+02 -289.9282564 392 5.411811e+02 -279.2920509 393 5.454571e+02 -268.5899480 394 5.495223e+02 -257.8260782 395 5.533758e+02 -247.0045820 396 5.570169e+02 -236.1296082 397 5.604450e+02 -225.2053126 398 5.636595e+02 -214.2358558 399 5.666599e+02 -203.2254023 400 5.694458e+02 -192.1781187 401 5.720170e+02 -181.0981717 402 5.743731e+02 -169.9897273 403 5.765141e+02 -158.8569485 404 5.784397e+02 -147.7039944 405 5.801501e+02 -136.5350182 406 5.816454e+02 -125.3541656 407 5.829256e+02 -114.1655738 408 5.839910e+02 -102.9733694 409 5.848420e+02 -91.7816670 410 5.854789e+02 -80.5945681 411 5.859022e+02 -69.4161591 412 5.861125e+02 -58.2505099 413 5.861104e+02 -47.1016728 414 5.858967e+02 -35.9736805 415 5.854720e+02 -24.8705451 416 5.848373e+02 -13.7962561 417 5.839935e+02 -2.7547797 418 5.829416e+02 8.2499432 419 5.816828e+02 19.2139982 420 5.802180e+02 30.1334989 421 5.785487e+02 41.0045881 422 5.766761e+02 51.8234391 423 5.746016e+02 62.5862575 424 5.723266e+02 73.2892820 425 5.698526e+02 83.9287860 426 5.671812e+02 94.5010790 427 5.643142e+02 105.0025073 428 5.612531e+02 115.4294563 429 5.579998e+02 125.7783505 430 5.545562e+02 136.0456557 431 5.509241e+02 146.2278798 432 5.471056e+02 156.3215740 433 5.431027e+02 166.3233341 434 5.389175e+02 176.2298013 435 5.345521e+02 186.0376638 436 5.300089e+02 195.7436576 437 5.252900e+02 205.3445677 438 5.203979e+02 214.8372289 439 5.153349e+02 224.2185274 440 5.101035e+02 233.4854013 441 5.047062e+02 242.6348415 442 4.991456e+02 251.6638934 443 4.934242e+02 260.5696569 444 4.875448e+02 269.3492882 445 4.815101e+02 278.0000000 446 4.753229e+02 286.5190628 447 4.689859e+02 294.9038054 448 4.625020e+02 303.1516163 449 4.558742e+02 311.2599437 450 4.491053e+02 319.2262969 451 4.421984e+02 327.0482470 452 4.351566e+02 334.7234271 453 4.279828e+02 342.2495336 454 4.206802e+02 349.6243265 455 4.132520e+02 356.8456303 456 4.057013e+02 363.9113343 457 3.980314e+02 370.8193935 458 3.902455e+02 377.5678290 459 3.823469e+02 384.1547285 460 3.743389e+02 390.5782468 461 3.662249e+02 396.8366066 462 3.580083e+02 402.9280984 463 3.496924e+02 408.8510814 464 3.412807e+02 414.6039837 465 3.327767e+02 420.1853025 466 3.241837e+02 425.5936048 467 3.155054e+02 430.8275276 468 3.067452e+02 435.8857779 469 2.979066e+02 440.7671334 470 2.889932e+02 445.4704423 471 2.800086e+02 449.9946239 472 2.709564e+02 454.3386684 473 2.618401e+02 458.5016373 474 2.526634e+02 462.4826636 475 2.434298e+02 466.2809515 476 2.341430e+02 469.8957768 477 2.248067e+02 473.3264868 478 2.154244e+02 476.5725005 479 2.059997e+02 479.6333081 480 1.965364e+02 482.5084716 481 1.870381e+02 485.1976241 482 1.775085e+02 487.7004702 483 1.679510e+02 490.0167856 484 1.583695e+02 492.1464170 485 1.487675e+02 494.0892818 486 1.391487e+02 495.8453682 487 1.295167e+02 497.4147347 488 1.198751e+02 498.7975099 489 1.102275e+02 499.9938920 490 1.005775e+02 501.0041491 491 9.092875e+01 501.8286182 492 8.128472e+01 502.4677050 493 7.164900e+01 502.9218839 494 6.202512e+01 503.1916970 495 5.241662e+01 503.2777540 496 4.282699e+01 503.1807317 497 3.325971e+01 502.9013735 498 2.371825e+01 502.4404889 499 1.420603e+01 501.7989526 500 4.726470e+00 500.9777046 501 -4.717036e+00 499.9777491 502 -1.412113e+01 498.8001541 503 -2.348248e+01 497.4460506 504 -3.279777e+01 495.9166322 505 -4.206374e+01 494.2131543 506 -5.127713e+01 492.3369332 507 -6.043474e+01 490.2893458 508 -6.953338e+01 488.0718283 509 -7.856990e+01 485.6858760 510 -8.754121e+01 483.1330422 511 -9.644422e+01 480.4149375 512 -1.052759e+02 477.5332289 513 -1.140333e+02 474.4896390 514 -1.227133e+02 471.2859452 515 -1.313132e+02 467.9239786 516 -1.398300e+02 464.4056234 517 -1.482608e+02 460.7328159 518 -1.566030e+02 456.9075433 519 -1.648537e+02 452.9318432 520 -1.730103e+02 448.8078023 521 -1.810700e+02 444.5375554 522 -1.890304e+02 440.1232846 523 -1.968888e+02 435.5672184 524 -2.046427e+02 430.8716302 525 -2.122897e+02 426.0388376 526 -2.198273e+02 421.0712014 527 -2.272532e+02 415.9711244 528 -2.345651e+02 410.7410501 529 -2.417607e+02 405.3834621 530 -2.488379e+02 399.9008827 531 -2.557944e+02 394.2958717 532 -2.626282e+02 388.5710255 533 -2.693372e+02 382.7289757 534 -2.759195e+02 376.7723884 535 -2.823731e+02 370.7039623 536 -2.886962e+02 364.5264284 537 -2.948869e+02 358.2425483 538 -3.009435e+02 351.8551128 539 -3.068643e+02 345.3669415 540 -3.126476e+02 338.7808808 541 -3.182919e+02 332.0998032 542 -3.237956e+02 325.3266058 543 -3.291573e+02 318.4642094 544 -3.343756e+02 311.5155567 545 -3.394492e+02 304.4836118 546 -3.443766e+02 297.3713586 547 -3.491569e+02 290.1817993 548 -3.537887e+02 282.9179538 549 -3.582710e+02 275.5828580 550 -3.626027e+02 268.1795625 551 -3.667829e+02 260.7111318 552 -3.708107e+02 253.1806426 553 -3.746852e+02 245.5911828 554 -3.784056e+02 237.9458502 555 -3.819712e+02 230.2477513 556 -3.853813e+02 222.5000000 557 -3.886354e+02 214.7057163 558 -3.917328e+02 206.8680251 559 -3.946732e+02 198.9900552 560 -3.974561e+02 191.0749377 561 -4.000812e+02 183.1258049 562 -4.025481e+02 175.1457892 563 -4.048566e+02 167.1380218 564 -4.070066e+02 159.1056313 565 -4.089980e+02 151.0517429 566 -4.108307e+02 142.9794766 567 -4.125047e+02 134.8919467 568 -4.140202e+02 126.7922600 569 -4.153772e+02 118.6835149 570 -4.165760e+02 110.5688004 571 -4.176168e+02 102.4511943 572 -4.184999e+02 94.3337629 573 -4.192257e+02 86.2195590 574 -4.197947e+02 78.1116213 575 -4.202073e+02 70.0129733 576 -4.204641e+02 61.9266216 577 -4.205658e+02 53.8555556 578 -4.205129e+02 45.8027455 579 -4.203062e+02 37.7711422 580 -4.199466e+02 29.7636751 581 -4.194347e+02 21.7832522 582 -4.187716e+02 13.8327582 583 -4.179581e+02 5.9150536 584 -4.169954e+02 -1.9670259 585 -4.158843e+02 -9.8106710 586 -4.146261e+02 -17.6130993 587 -4.132218e+02 -25.3715566 588 -4.116728e+02 -33.0833178 589 -4.099802e+02 -40.7456878 590 -4.081454e+02 -48.3560023 591 -4.061698e+02 -55.9116293 592 -4.040547e+02 -63.4099693 593 -4.018016e+02 -70.8484565 594 -3.994120e+02 -78.2245598 595 -3.968874e+02 -85.5357836 596 -3.942295e+02 -92.7796684 597 -3.914400e+02 -99.9537919 598 -3.885203e+02 -107.0557697 599 -3.854725e+02 -114.0832560 600 -3.822980e+02 -121.0339447 601 -3.789989e+02 -127.9055698 602 -3.755769e+02 -134.6959062 603 -3.720339e+02 -141.4027705 604 -3.683719e+02 -148.0240217 605 -3.645929e+02 -154.5575618 606 -3.606987e+02 -161.0013364 607 -3.566915e+02 -167.3533358 608 -3.525734e+02 -173.6115947 609 -3.483464e+02 -179.7741937 610 -3.440127e+02 -185.8392594 611 -3.395745e+02 -191.8049651 612 -3.350340e+02 -197.6695313 613 -3.303933e+02 -203.4312260 614 -3.256548e+02 -209.0883657 615 -3.208208e+02 -214.6393154 616 -3.158935e+02 -220.0824893 617 -3.108753e+02 -225.4163509 618 -3.057686e+02 -230.6394138 619 -3.005758e+02 -235.7502421 620 -2.952993e+02 -240.7474503 621 -2.899415e+02 -245.6297040 622 -2.845048e+02 -250.3957202 623 -2.789918e+02 -255.0442674 624 -2.734049e+02 -259.5741663 625 -2.677467e+02 -263.9842893 626 -2.620196e+02 -268.2735616 627 -2.562263e+02 -272.4409608 628 -2.503692e+02 -276.4855173 629 -2.444510e+02 -280.4063143 630 -2.384742e+02 -284.2024884 631 -2.324414e+02 -287.8732291 632 -2.263552e+02 -291.4177793 633 -2.202182e+02 -294.8354353 634 -2.140331e+02 -298.1255467 635 -2.078024e+02 -301.2875167 636 -2.015288e+02 -304.3208019 637 -1.952149e+02 -307.2249122 638 -1.888634e+02 -309.9994111 639 -1.824768e+02 -312.6439153 640 -1.760579e+02 -315.1580949 641 -1.696092e+02 -317.5416730 642 -1.631335e+02 -319.7944260 643 -1.566332e+02 -321.9161829 644 -1.501112e+02 -323.9068257 645 -1.435699e+02 -325.7662889 646 -1.370121e+02 -327.4945591 647 -1.304403e+02 -329.0916754 648 -1.238571e+02 -330.5577285 649 -1.172652e+02 -331.8928608 650 -1.106671e+02 -333.0972661 651 -1.040654e+02 -334.1711891 652 -9.746275e+01 -335.1149252 653 -9.086159e+01 -335.9288202 654 -8.426450e+01 -336.6132699 655 -7.767403e+01 -337.1687196 656 -7.109267e+01 -337.5956638 657 -6.452293e+01 -337.8946458 658 -5.796728e+01 -338.0662572 659 -5.142819e+01 -338.1111376 660 -4.490809e+01 -338.0299737 661 -3.840942e+01 -337.8234994 662 -3.193456e+01 -337.4924947 663 -2.548590e+01 -337.0377857 664 -1.906579e+01 -336.4602437 665 -1.267657e+01 -335.7607847 666 -6.320547e+00 -334.9403688 667 4.090320e-14 -334.0000000 668 6.282812e+00 -332.9407249 669 1.252566e+01 -331.7636325 670 1.872634e+01 -330.4698536 671 2.488268e+01 -329.0605600 672 3.099254e+01 -327.5369639 673 3.705379e+01 -325.9003171 674 4.306436e+01 -324.1519103 675 4.902219e+01 -322.2930727 676 5.492527e+01 -320.3251709 677 6.077160e+01 -318.2496083 678 6.655922e+01 -316.0678244 679 7.228623e+01 -313.7812940 680 7.795074e+01 -311.3915263 681 8.355088e+01 -308.9000646 682 8.908486e+01 -306.3084846 683 9.455089e+01 -303.6183946 684 9.994723e+01 -300.8314340 685 1.052722e+02 -297.9492728 686 1.105241e+02 -294.9736104 687 1.157013e+02 -291.9061753 688 1.208022e+02 -288.7487240 689 1.258253e+02 -285.5030397 690 1.307691e+02 -282.1709322 691 1.356321e+02 -278.7542366 692 1.404129e+02 -275.2548123 693 1.451101e+02 -271.6745425 694 1.497223e+02 -268.0153327 695 1.542483e+02 -264.2791107 696 1.586868e+02 -260.4678247 697 1.630366e+02 -256.5834431 698 1.672965e+02 -252.6279533 699 1.714654e+02 -248.6033608 700 1.755421e+02 -244.5116882 701 1.795257e+02 -240.3549744 702 1.834152e+02 -236.1352738 703 1.872096e+02 -231.8546548 704 1.909079e+02 -227.5151996 705 1.945094e+02 -223.1190028 706 1.980132e+02 -218.6681705 707 2.014185e+02 -214.1648195 708 2.047247e+02 -209.6110761 709 2.079309e+02 -205.0090757 710 2.110367e+02 -200.3609612 711 2.140413e+02 -195.6688824 712 2.169443e+02 -190.9349951 713 2.197451e+02 -186.1614599 714 2.224433e+02 -181.3504415 715 2.250384e+02 -176.5041080 716 2.275302e+02 -171.6246291 717 2.299182e+02 -166.7141762 718 2.322022e+02 -161.7749207 719 2.343820e+02 -156.8090336 720 2.364574e+02 -151.8186842 721 2.384282e+02 -146.8060394 722 2.402943e+02 -141.7732628 723 2.420557e+02 -136.7225136 724 2.437124e+02 -131.6559459 725 2.452643e+02 -126.5757078 726 2.467117e+02 -121.4839403 727 2.480545e+02 -116.3827766 728 2.492930e+02 -111.2743414 729 2.504274e+02 -106.1607495 730 2.514579e+02 -101.0441055 731 2.523848e+02 -95.9265026 732 2.532085e+02 -90.8100220 733 2.539293e+02 -85.6967318 734 2.545476e+02 -80.5886864 735 2.550639e+02 -75.4879256 736 2.554786e+02 -70.3964738 737 2.557924e+02 -65.3163393 738 2.560059e+02 -60.2495131 739 2.561195e+02 -55.1979687 740 2.561340e+02 -50.1636612 741 2.560500e+02 -45.1485262 742 2.558684e+02 -40.1544793 743 2.555898e+02 -35.1834155 744 2.552150e+02 -30.2372083 745 2.547450e+02 -25.3177089 746 2.541805e+02 -20.4267459 747 2.535226e+02 -15.5661241 748 2.527720e+02 -10.7376244 749 2.519299e+02 -5.9430026 750 2.509972e+02 -1.1839892 751 2.499750e+02 3.5377115 752 2.488643e+02 8.2204219 753 2.476662e+02 12.8624918 754 2.463820e+02 17.4622987 755 2.450126e+02 22.0182487 756 2.435595e+02 26.5287770 757 2.420237e+02 30.9923480 758 2.404066e+02 35.4074566 759 2.387093e+02 39.7726280 760 2.369333e+02 44.0864186 761 2.350798e+02 48.3474162 762 2.331503e+02 52.5542408 763 2.311460e+02 56.7055448 764 2.290685e+02 60.8000132 765 2.269190e+02 64.8363646 766 2.246992e+02 68.8133512 767 2.224104e+02 72.7297593 768 2.200541e+02 76.5844093 769 2.176320e+02 80.3761568 770 2.151454e+02 84.1038921 771 2.125959e+02 87.7665411 772 2.099852e+02 91.3630655 773 2.073148e+02 94.8924625 774 2.045863e+02 98.3537661 775 2.018012e+02 101.7460463 776 1.989614e+02 105.0684100 777 1.960683e+02 108.3200010 778 1.931237e+02 111.5000000 779 1.901291e+02 114.6076251 780 1.870864e+02 117.6421318 781 1.839972e+02 120.6028130 782 1.808631e+02 123.4889994 783 1.776859e+02 126.3000594 784 1.744674e+02 129.0353993 785 1.712091e+02 131.6944631 786 1.679130e+02 134.2767331 787 1.645806e+02 136.7817292 788 1.612137e+02 139.2090096 789 1.578141e+02 141.5581704 790 1.543835e+02 143.8288456 791 1.509237e+02 146.0207073 792 1.474363e+02 148.1334654 793 1.439233e+02 150.1668675 794 1.403862e+02 152.1206992 795 1.368269e+02 153.9947834 796 1.332471e+02 155.7889808 797 1.296485e+02 157.5031893 798 1.260330e+02 159.1373440 799 1.224021e+02 160.6914171 800 1.187576e+02 162.1654177 801 1.151014e+02 163.5593913 802 1.114350e+02 164.8734202 803 1.077602e+02 166.1076226 804 1.040787e+02 167.2621526 805 1.003922e+02 168.3372004 806 9.670232e+01 169.3329911 807 9.301081e+01 170.2497851 808 8.931930e+01 171.0878776 809 8.562945e+01 171.8475984 810 8.194289e+01 172.5293110 811 7.826124e+01 173.1334132 812 7.458611e+01 173.6603357 813 7.091910e+01 174.1105425 814 6.726179e+01 174.4845302 815 6.361575e+01 174.7828275 816 5.998251e+01 175.0059949 817 5.636362e+01 175.1546242 818 5.276058e+01 175.2293383 819 4.917489e+01 175.2307903 820 4.560803e+01 175.1596634 821 4.206145e+01 175.0166701 822 3.853658e+01 174.8025521 823 3.503484e+01 174.5180793 824 3.155763e+01 174.1640498 825 2.810631e+01 173.7412890 826 2.468223e+01 173.2506490 827 2.128673e+01 172.6930084 828 1.792110e+01 172.0692716 829 1.458662e+01 171.3803680 830 1.128455e+01 170.6272517 831 8.016107e+00 169.8109008 832 4.782507e+00 168.9323167 833 1.584924e+00 167.9925237 834 -1.575490e+00 166.9925682 835 -4.697610e+00 165.9335182 836 -7.780339e+00 164.8164625 837 -1.082260e+01 163.6425104 838 -1.382337e+01 162.4127906 839 -1.678161e+01 161.1284509 840 -1.969634e+01 159.7906572 841 -2.256661e+01 158.4005933 842 -2.539149e+01 156.9594599 843 -2.817008e+01 155.4684739 844 -3.090152e+01 153.9288677 845 -3.358495e+01 152.3418890 846 -3.621958e+01 150.7087993 847 -3.880462e+01 149.0308738 848 -4.133933e+01 147.3094007 849 -4.382300e+01 145.5456799 850 -4.625493e+01 143.7410231 851 -4.863447e+01 141.8967526 852 -5.096100e+01 140.0142005 853 -5.323393e+01 138.0947084 854 -5.545270e+01 136.1396263 855 -5.761678e+01 134.1503122 856 -5.972568e+01 132.1281311 857 -6.177893e+01 130.0744544 858 -6.377610e+01 127.9906592 859 -6.571679e+01 125.8781276 860 -6.760064e+01 123.7382459 861 -6.942730e+01 121.5724038 862 -7.119648e+01 119.3819941 863 -7.290791e+01 117.1684115 864 -7.456134e+01 114.9330520 865 -7.615657e+01 112.6773123 866 -7.769343e+01 110.4025892 867 -7.917176e+01 108.1102785 868 -8.059147e+01 105.8017747 869 -8.195246e+01 103.4784700 870 -8.325470e+01 101.1417539 871 -8.449817e+01 98.7930122 872 -8.568288e+01 96.4336265 873 -8.680887e+01 94.0649734 874 -8.787624e+01 91.6884239 875 -8.888507e+01 89.3053428 876 -8.983552e+01 86.9170877 877 -9.072774e+01 84.5250088 878 -9.156194e+01 82.1304479 879 -9.233835e+01 79.7347379 880 -9.305723e+01 77.3392020 881 -9.371886e+01 74.9451533 882 -9.432355e+01 72.5538940 883 -9.487166e+01 70.1667148 884 -9.536356e+01 67.7848943 885 -9.579964e+01 65.4096983 886 -9.618034e+01 63.0423795 887 -9.650612e+01 60.6841766 888 -9.677745e+01 58.3363137 889 -9.699485e+01 56.0000000 890 -9.715884e+01 53.6764291 891 -9.727001e+01 51.3667782 892 -9.732892e+01 49.0722082 893 -9.733619e+01 46.7938623 894 -9.729247e+01 44.5328662 895 -9.719840e+01 42.2903272 896 -9.705467e+01 40.0673340 897 -9.686199e+01 37.8649557 898 -9.662109e+01 35.6842420 899 -9.633272e+01 33.5262221 900 -9.599765e+01 31.3919046 901 -9.561667e+01 29.2822771 902 -9.519061e+01 27.1983055 903 -9.472029e+01 25.1409337 904 -9.420657e+01 23.1110834 905 -9.365032e+01 21.1096532 906 -9.305243e+01 19.1375189 907 -9.241382e+01 17.1955326 908 -9.173540e+01 15.2845223 909 -9.101812e+01 13.4052922 910 -9.026294e+01 11.5586216 911 -8.947083e+01 9.7452650 912 -8.864279e+01 7.9659518 913 -8.777981e+01 6.2213858 914 -8.688291e+01 4.5122451 915 -8.595312e+01 2.8391819 916 -8.499149e+01 1.2028219 917 -8.399907e+01 -0.3962354 918 -8.297692e+01 -1.9574175 919 -8.192612e+01 -3.4801787 920 -8.084775e+01 -4.9640002 921 -7.974292e+01 -6.4083909 922 -7.861271e+01 -7.8128867 923 -7.745826e+01 -9.1770515 924 -7.628067e+01 -10.5004767 925 -7.508106e+01 -11.7827816 926 -7.386058e+01 -13.0236133 927 -7.262036e+01 -14.2226472 928 -7.136153e+01 -15.3795867 929 -7.008525e+01 -16.4941633 930 -6.879267e+01 -17.5661367 931 -6.748492e+01 -18.5952950 932 -6.616318e+01 -19.5814544 933 -6.482859e+01 -20.5244595 934 -6.348232e+01 -21.4241829 935 -6.212550e+01 -22.2805258 936 -6.075931e+01 -23.0934173 937 -5.938490e+01 -23.8628146 938 -5.800341e+01 -24.5887030 939 -5.661600e+01 -25.2710958 940 -5.522382e+01 -25.9100342 941 -5.382800e+01 -26.5055870 942 -5.242969e+01 -27.0578506 943 -5.103002e+01 -27.5669490 944 -4.963012e+01 -28.0330334 945 -4.823111e+01 -28.4562821 946 -4.683410e+01 -28.8369006 947 -4.544021e+01 -29.1751208 948 -4.405052e+01 -29.4712013 949 -4.266613e+01 -29.7254271 950 -4.128813e+01 -29.9381091 951 -3.991758e+01 -30.1095841 952 -3.855554e+01 -30.2402143 953 -3.720306e+01 -30.3303874 954 -3.586118e+01 -30.3805160 955 -3.453093e+01 -30.3910373 956 -3.321331e+01 -30.3624128 957 -3.190933e+01 -30.2951282 958 -3.061997e+01 -30.1896927 959 -2.934620e+01 -30.0466389 960 -2.808898e+01 -29.8665224 961 -2.684925e+01 -29.6499214 962 -2.562793e+01 -29.3974362 963 -2.442593e+01 -29.1096888 964 -2.324414e+01 -28.7873229 965 -2.208343e+01 -28.4310029 966 -2.094467e+01 -28.0414137 967 -1.982868e+01 -27.6192605 968 -1.873628e+01 -27.1652679 969 -1.766828e+01 -26.6801799 970 -1.662544e+01 -26.1647590 971 -1.560854e+01 -25.6197860 972 -1.461831e+01 -25.0460595 973 -1.365546e+01 -24.4443952 974 -1.272069e+01 -23.8156255 975 -1.181468e+01 -23.1605991 976 -1.093808e+01 -22.4801804 977 -1.009151e+01 -21.7752488 978 -9.275585e+00 -21.0466984 979 -8.490890e+00 -20.2954375 980 -7.737983e+00 -19.5223875 981 -7.017401e+00 -18.7284832 982 -6.329656e+00 -17.9146715 983 -5.675237e+00 -17.0819111 984 -5.054607e+00 -16.2311720 985 -4.468206e+00 -15.3634350 986 -3.916448e+00 -14.4796905 987 -3.399721e+00 -13.5809388 988 -2.918388e+00 -12.6681889 989 -2.472789e+00 -11.7424579 990 -2.063233e+00 -10.8047707 991 -1.690008e+00 -9.8561591 992 -1.353373e+00 -8.8976615 993 -1.053562e+00 -7.9303220 994 -7.907821e-01 -6.9551897 995 -5.652134e-01 -5.9733185 996 -3.770103e-01 -4.9857661 997 -2.263002e-01 -3.9935934 998 -1.131837e-01 -2.9978641 999 -3.773461e-02 -1.9996440 1000 -1.224647e-16 -1.0000000 ``` ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi paste( "Like a circle in a spiral, like a wheel within a wheel,", "never ending or beginning on an ever spinning reel" ) -> rhyme data.frame( x = sin(t) * 1000:1, y = cos(t) * 1000:1 ) %>% * ggplot() ``` ] .panel2-intro-auto[ ![](extenders_files/figure-html/intro_auto_05_output-1.png)<!-- --> ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi paste( "Like a circle in a spiral, like a wheel within a wheel,", "never ending or beginning on an ever spinning reel" ) -> rhyme data.frame( x = sin(t) * 1000:1, y = cos(t) * 1000:1 ) %>% ggplot() + * aes(x = x, y = y) ``` ] .panel2-intro-auto[ ![](extenders_files/figure-html/intro_auto_06_output-1.png)<!-- --> ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi paste( "Like a circle in a spiral, like a wheel within a wheel,", "never ending or beginning on an ever spinning reel" ) -> rhyme data.frame( x = sin(t) * 1000:1, y = cos(t) * 1000:1 ) %>% ggplot() + aes(x = x, y = y) + * geom_path(alpha = .25) ``` ] .panel2-intro-auto[ ![](extenders_files/figure-html/intro_auto_07_output-1.png)<!-- --> ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi paste( "Like a circle in a spiral, like a wheel within a wheel,", "never ending or beginning on an ever spinning reel" ) -> rhyme data.frame( x = sin(t) * 1000:1, y = cos(t) * 1000:1 ) %>% ggplot() + aes(x = x, y = y) + geom_path(alpha = .25) + * aes(label = rhyme) ``` ] .panel2-intro-auto[ ![](extenders_files/figure-html/intro_auto_08_output-1.png)<!-- --> ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi paste( "Like a circle in a spiral, like a wheel within a wheel,", "never ending or beginning on an ever spinning reel" ) -> rhyme data.frame( x = sin(t) * 1000:1, y = cos(t) * 1000:1 ) %>% ggplot() + aes(x = x, y = y) + geom_path(alpha = .25) + aes(label = rhyme) + * coord_equal(xlim = c(-1000, 1000), * ylim = c(-1000, 1000)) ``` ] .panel2-intro-auto[ ![](extenders_files/figure-html/intro_auto_09_output-1.png)<!-- --> ] --- count: false .panel1-intro-auto[ ```r t <- seq(5, -1, length.out = 1000) * pi paste( "Like a circle in a spiral, like a wheel within a wheel,", "never ending or beginning on an ever spinning reel" ) -> rhyme data.frame( x = sin(t) * 1000:1, y = cos(t) * 1000:1 ) %>% ggplot() + aes(x = x, y = y) + geom_path(alpha = .25) + aes(label = rhyme) + coord_equal(xlim = c(-1000, 1000), ylim = c(-1000, 1000)) + * geomtextpath::geom_textpath(size = 4, * hjust = .1, * ) ``` ] .panel2-intro-auto[ ![](extenders_files/figure-html/intro_auto_10_output-1.png)<!-- --> ] <style> .panel1-intro-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-intro-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-intro-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- count: false .panel1-temps-auto[ ```r *data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, * 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, * 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), * City = rep(c("Glasgow", "Amsterdam"), each = 12), * Month = factor(rep(month.abb, 2), month.abb)) ``` ] .panel2-temps-auto[ ``` Temperature City Month 1 4.4 Glasgow Jan 2 4.6 Glasgow Feb 3 6.3 Glasgow Mar 4 8.7 Glasgow Apr 5 11.6 Glasgow May 6 14.1 Glasgow Jun 7 15.9 Glasgow Jul 8 15.5 Glasgow Aug 9 13.1 Glasgow Sep 10 9.7 Glasgow Oct 11 6.7 Glasgow Nov 12 4.3 Glasgow Dec 13 3.6 Amsterdam Jan 14 3.9 Amsterdam Feb 15 6.4 Amsterdam Mar 16 9.7 Amsterdam Apr 17 13.2 Amsterdam May 18 15.8 Amsterdam Jun 19 18.0 Amsterdam Jul 20 17.8 Amsterdam Aug 21 15.1 Amsterdam Sep 22 11.2 Amsterdam Oct 23 7.2 Amsterdam Nov 24 4.4 Amsterdam Dec ``` ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% * ggplot() ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_02_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + * aes(Month, Temperature) ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_03_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + * geom_col(aes(fill = City), position = position_dodge(width = 1)) ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_04_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + geom_col(aes(fill = City), position = position_dodge(width = 1)) + * geom_vline(xintercept = 1:13 - 0.5, color = "gray90") ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_05_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + geom_col(aes(fill = City), position = position_dodge(width = 1)) + geom_vline(xintercept = 1:13 - 0.5, color = "gray90") + * geom_hline(yintercept = 0:3 * 5, color = "gray90") ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_06_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + geom_col(aes(fill = City), position = position_dodge(width = 1)) + geom_vline(xintercept = 1:13 - 0.5, color = "gray90") + geom_hline(yintercept = 0:3 * 5, color = "gray90") + * scale_fill_manual(values = c("darkorange", "dodgerblue4")) ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_07_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + geom_col(aes(fill = City), position = position_dodge(width = 1)) + geom_vline(xintercept = 1:13 - 0.5, color = "gray90") + geom_hline(yintercept = 0:3 * 5, color = "gray90") + scale_fill_manual(values = c("darkorange", "dodgerblue4")) + * ggtitle("Average monthly temperature in Amsterdam and Glasgow") ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_08_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + geom_col(aes(fill = City), position = position_dodge(width = 1)) + geom_vline(xintercept = 1:13 - 0.5, color = "gray90") + geom_hline(yintercept = 0:3 * 5, color = "gray90") + scale_fill_manual(values = c("darkorange", "dodgerblue4")) + ggtitle("Average monthly temperature in Amsterdam and Glasgow") + * theme_bw() ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_09_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + geom_col(aes(fill = City), position = position_dodge(width = 1)) + geom_vline(xintercept = 1:13 - 0.5, color = "gray90") + geom_hline(yintercept = 0:3 * 5, color = "gray90") + scale_fill_manual(values = c("darkorange", "dodgerblue4")) + ggtitle("Average monthly temperature in Amsterdam and Glasgow") + theme_bw() + * theme(panel.border = element_blank(), * axis.text.x = element_text(size = 14), * axis.title.x = element_blank(), * panel.grid.major = element_blank()) ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_10_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + geom_col(aes(fill = City), position = position_dodge(width = 1)) + geom_vline(xintercept = 1:13 - 0.5, color = "gray90") + geom_hline(yintercept = 0:3 * 5, color = "gray90") + scale_fill_manual(values = c("darkorange", "dodgerblue4")) + ggtitle("Average monthly temperature in Amsterdam and Glasgow") + theme_bw() + theme(panel.border = element_blank(), axis.text.x = element_text(size = 14), axis.title.x = element_blank(), panel.grid.major = element_blank()) + * coord_polar() ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_11_output-1.png)<!-- --> ] --- count: false .panel1-temps-auto[ ```r data.frame(Temperature = c(4.4, 4.6, 6.3, 8.7, 11.6, 14.1, 15.9, 15.5, 13.1, 9.7, 6.7, 4.3, 3.6, 3.9, 6.4, 9.7, 13.2, 15.8, 18, 17.8, 15.1, 11.2, 7.2, 4.4), City = rep(c("Glasgow", "Amsterdam"), each = 12), Month = factor(rep(month.abb, 2), month.abb)) %>% ggplot() + aes(Month, Temperature) + geom_col(aes(fill = City), position = position_dodge(width = 1)) + geom_vline(xintercept = 1:13 - 0.5, color = "gray90") + geom_hline(yintercept = 0:3 * 5, color = "gray90") + scale_fill_manual(values = c("darkorange", "dodgerblue4")) + ggtitle("Average monthly temperature in Amsterdam and Glasgow") + theme_bw() + theme(panel.border = element_blank(), axis.text.x = element_text(size = 14), axis.title.x = element_blank(), panel.grid.major = element_blank()) + coord_polar() + * geomtextpath::coord_curvedpolar() ``` ] .panel2-temps-auto[ ![](extenders_files/figure-html/temps_auto_12_output-1.png)<!-- --> ] <style> .panel1-temps-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-temps-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-temps-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- count: false .panel1-itscool-auto[ ```r *data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), * seq(0, 10/6 * pi, 2*pi/3)), * y1 = c(rep(2, 6), rep(-1, 3)), * x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, * seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), * y2 = c(rep(4, 6), rep(2, 3)), * group = letters[c(1:6, (1:3) * 2)], * alpha = c(rep(1, 6), rep(0.4, 3))) ``` ] .panel2-itscool-auto[ ``` x1 y1 x2 y2 group alpha 1 0.000000 2 1.047198 4 a 1.0 2 1.047198 2 2.094395 4 b 1.0 3 2.094395 2 3.141593 4 c 1.0 4 3.141593 2 4.188790 4 d 1.0 5 4.188790 2 5.235988 4 e 1.0 6 5.235988 2 6.283185 4 f 1.0 7 0.000000 -1 2.094395 2 b 0.4 8 2.094395 -1 4.188790 2 d 0.4 9 4.188790 -1 6.283185 2 f 0.4 ``` ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% * ggplot() ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_02_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + * aes(x1, y1) ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_03_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + * geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, * alpha = alpha), * color = "white", size = 2) ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_04_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + * geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), * y1 = rep(0.5, 300), * label = rep(c("stats", "effects", "polar"), each = 100)), * aes(label = label), linetype = 0, size = 8, * upright = TRUE) ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_05_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(0.5, 300), label = rep(c("stats", "effects", "polar"), each = 100)), aes(label = label), linetype = 0, size = 8, upright = TRUE) + * geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), * y1 = rep(3, 300), * label = rep(c("density", "smooth", "unique", "organic", * "easy to use", "automatic"), * each = 50)), * aes(label = label), linetype = 0, size = 4.6, color = "white", * upright = TRUE) ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_06_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(0.5, 300), label = rep(c("stats", "effects", "polar"), each = 100)), aes(label = label), linetype = 0, size = 8, upright = TRUE) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(3, 300), label = rep(c("density", "smooth", "unique", "organic", "easy to use", "automatic"), each = 50)), aes(label = label), linetype = 0, size = 4.6, color = "white", upright = TRUE) + * scale_y_continuous(limits = c(-5, 4)) ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_07_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(0.5, 300), label = rep(c("stats", "effects", "polar"), each = 100)), aes(label = label), linetype = 0, size = 8, upright = TRUE) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(3, 300), label = rep(c("density", "smooth", "unique", "organic", "easy to use", "automatic"), each = 50)), aes(label = label), linetype = 0, size = 4.6, color = "white", upright = TRUE) + scale_y_continuous(limits = c(-5, 4)) + * scale_x_continuous(limits = c(0, 2*pi)) ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_08_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(0.5, 300), label = rep(c("stats", "effects", "polar"), each = 100)), aes(label = label), linetype = 0, size = 8, upright = TRUE) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(3, 300), label = rep(c("density", "smooth", "unique", "organic", "easy to use", "automatic"), each = 50)), aes(label = label), linetype = 0, size = 4.6, color = "white", upright = TRUE) + scale_y_continuous(limits = c(-5, 4)) + scale_x_continuous(limits = c(0, 2*pi)) + * scale_fill_manual(values = c("deepskyblue3", "deepskyblue4", * "green3", "green4","tomato", "tomato2")) ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_09_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(0.5, 300), label = rep(c("stats", "effects", "polar"), each = 100)), aes(label = label), linetype = 0, size = 8, upright = TRUE) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(3, 300), label = rep(c("density", "smooth", "unique", "organic", "easy to use", "automatic"), each = 50)), aes(label = label), linetype = 0, size = 4.6, color = "white", upright = TRUE) + scale_y_continuous(limits = c(-5, 4)) + scale_x_continuous(limits = c(0, 2*pi)) + scale_fill_manual(values = c("deepskyblue3", "deepskyblue4", "green3", "green4","tomato", "tomato2")) + * scale_alpha_identity() ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_10_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(0.5, 300), label = rep(c("stats", "effects", "polar"), each = 100)), aes(label = label), linetype = 0, size = 8, upright = TRUE) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(3, 300), label = rep(c("density", "smooth", "unique", "organic", "easy to use", "automatic"), each = 50)), aes(label = label), linetype = 0, size = 4.6, color = "white", upright = TRUE) + scale_y_continuous(limits = c(-5, 4)) + scale_x_continuous(limits = c(0, 2*pi)) + scale_fill_manual(values = c("deepskyblue3", "deepskyblue4", "green3", "green4","tomato", "tomato2")) + scale_alpha_identity() + * theme_void() ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_11_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(0.5, 300), label = rep(c("stats", "effects", "polar"), each = 100)), aes(label = label), linetype = 0, size = 8, upright = TRUE) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(3, 300), label = rep(c("density", "smooth", "unique", "organic", "easy to use", "automatic"), each = 50)), aes(label = label), linetype = 0, size = 4.6, color = "white", upright = TRUE) + scale_y_continuous(limits = c(-5, 4)) + scale_x_continuous(limits = c(0, 2*pi)) + scale_fill_manual(values = c("deepskyblue3", "deepskyblue4", "green3", "green4","tomato", "tomato2")) + scale_alpha_identity() + theme_void() + * theme(legend.position = "none") ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_12_output-1.png)<!-- --> ] --- count: false .panel1-itscool-auto[ ```r data.frame(x1 = c(seq(0, 10/6 * pi, pi/3), seq(0, 10/6 * pi, 2*pi/3)), y1 = c(rep(2, 6), rep(-1, 3)), x2 = c(seq(0, 10/6 * pi, pi/3) + pi/3, seq(0, 10/6 * pi, 2*pi/3) + 2*pi/3), y2 = c(rep(4, 6), rep(2, 3)), group = letters[c(1:6, (1:3) * 2)], alpha = c(rep(1, 6), rep(0.4, 3))) %>% ggplot() + aes(x1, y1) + geom_rect(aes(xmin = x1, xmax = x2, ymin = y1, ymax = y2, fill = group, alpha = alpha), color = "white", size = 2) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(0.5, 300), label = rep(c("stats", "effects", "polar"), each = 100)), aes(label = label), linetype = 0, size = 8, upright = TRUE) + geomtextpath::geom_textpath(data = data.frame(x1 = seq(0, 2 * pi, length = 300), y1 = rep(3, 300), label = rep(c("density", "smooth", "unique", "organic", "easy to use", "automatic"), each = 50)), aes(label = label), linetype = 0, size = 4.6, color = "white", upright = TRUE) + scale_y_continuous(limits = c(-5, 4)) + scale_x_continuous(limits = c(0, 2*pi)) + scale_fill_manual(values = c("deepskyblue3", "deepskyblue4", "green3", "green4","tomato", "tomato2")) + scale_alpha_identity() + theme_void() + theme(legend.position = "none") + * coord_polar() ``` ] .panel2-itscool-auto[ ![](extenders_files/figure-html/itscool_auto_13_output-1.png)<!-- --> ] <style> .panel1-itscool-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-itscool-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-itscool-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> count: false .panel1-meet_times-auto[ ```r *library(lubridate) ``` ] .panel2-meet_times-auto[ ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) *ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 11:00:00 EDT" ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> * meeting ``` ] .panel2-meet_times-auto[ ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting *lubridate::with_tz(meeting, tz = "Europe/London") ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") *time_to_local <- function(x, tz){ * lubridate::with_tz(x, tz = tz) %>% * as.character() *} ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } *library(lubridate) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) *OlsonNames() ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` [1] "Africa/Abidjan" "Africa/Accra" [3] "Africa/Addis_Ababa" "Africa/Algiers" [5] "Africa/Asmara" "Africa/Asmera" [7] "Africa/Bamako" "Africa/Bangui" [9] "Africa/Banjul" "Africa/Bissau" [11] "Africa/Blantyre" "Africa/Brazzaville" [13] "Africa/Bujumbura" "Africa/Cairo" [15] "Africa/Casablanca" "Africa/Ceuta" [17] "Africa/Conakry" "Africa/Dakar" [19] "Africa/Dar_es_Salaam" "Africa/Djibouti" [21] "Africa/Douala" "Africa/El_Aaiun" [23] "Africa/Freetown" "Africa/Gaborone" [25] "Africa/Harare" "Africa/Johannesburg" [27] "Africa/Juba" "Africa/Kampala" [29] "Africa/Khartoum" "Africa/Kigali" [31] "Africa/Kinshasa" "Africa/Lagos" [33] "Africa/Libreville" "Africa/Lome" [35] "Africa/Luanda" "Africa/Lubumbashi" [37] "Africa/Lusaka" "Africa/Malabo" [39] "Africa/Maputo" "Africa/Maseru" [41] "Africa/Mbabane" "Africa/Mogadishu" [43] "Africa/Monrovia" "Africa/Nairobi" [45] "Africa/Ndjamena" "Africa/Niamey" [47] "Africa/Nouakchott" "Africa/Ouagadougou" [49] "Africa/Porto-Novo" "Africa/Sao_Tome" [51] "Africa/Timbuktu" "Africa/Tripoli" [53] "Africa/Tunis" "Africa/Windhoek" [55] "America/Adak" "America/Anchorage" [57] "America/Anguilla" "America/Antigua" [59] "America/Araguaina" "America/Argentina/Buenos_Aires" [61] "America/Argentina/Catamarca" "America/Argentina/ComodRivadavia" [63] "America/Argentina/Cordoba" "America/Argentina/Jujuy" [65] "America/Argentina/La_Rioja" "America/Argentina/Mendoza" [67] "America/Argentina/Rio_Gallegos" "America/Argentina/Salta" [69] "America/Argentina/San_Juan" "America/Argentina/San_Luis" [71] "America/Argentina/Tucuman" "America/Argentina/Ushuaia" [73] "America/Aruba" "America/Asuncion" [75] "America/Atikokan" "America/Atka" [77] "America/Bahia" "America/Bahia_Banderas" [79] "America/Barbados" "America/Belem" [81] "America/Belize" "America/Blanc-Sablon" [83] "America/Boa_Vista" "America/Bogota" [85] "America/Boise" "America/Buenos_Aires" [87] "America/Cambridge_Bay" "America/Campo_Grande" [89] "America/Cancun" "America/Caracas" [91] "America/Catamarca" "America/Cayenne" [93] "America/Cayman" "America/Chicago" [95] "America/Chihuahua" "America/Coral_Harbour" [97] "America/Cordoba" "America/Costa_Rica" [99] "America/Creston" "America/Cuiaba" [101] "America/Curacao" "America/Danmarkshavn" [103] "America/Dawson" "America/Dawson_Creek" [105] "America/Denver" "America/Detroit" [107] "America/Dominica" "America/Edmonton" [109] "America/Eirunepe" "America/El_Salvador" [111] "America/Ensenada" "America/Fort_Nelson" [113] "America/Fort_Wayne" "America/Fortaleza" [115] "America/Glace_Bay" "America/Godthab" [117] "America/Goose_Bay" "America/Grand_Turk" [119] "America/Grenada" "America/Guadeloupe" [121] "America/Guatemala" "America/Guayaquil" [123] "America/Guyana" "America/Halifax" [125] "America/Havana" "America/Hermosillo" [127] "America/Indiana/Indianapolis" "America/Indiana/Knox" [129] "America/Indiana/Marengo" "America/Indiana/Petersburg" [131] "America/Indiana/Tell_City" "America/Indiana/Vevay" [133] "America/Indiana/Vincennes" "America/Indiana/Winamac" [135] "America/Indianapolis" "America/Inuvik" [137] "America/Iqaluit" "America/Jamaica" [139] "America/Jujuy" "America/Juneau" [141] "America/Kentucky/Louisville" "America/Kentucky/Monticello" [143] "America/Knox_IN" "America/Kralendijk" [145] "America/La_Paz" "America/Lima" [147] "America/Los_Angeles" "America/Louisville" [149] "America/Lower_Princes" "America/Maceio" [151] "America/Managua" "America/Manaus" [153] "America/Marigot" "America/Martinique" [155] "America/Matamoros" "America/Mazatlan" [157] "America/Mendoza" "America/Menominee" [159] "America/Merida" "America/Metlakatla" [161] "America/Mexico_City" "America/Miquelon" [163] "America/Moncton" "America/Monterrey" [165] "America/Montevideo" "America/Montreal" [167] "America/Montserrat" "America/Nassau" [169] "America/New_York" "America/Nipigon" [171] "America/Nome" "America/Noronha" [173] "America/North_Dakota/Beulah" "America/North_Dakota/Center" [175] "America/North_Dakota/New_Salem" "America/Ojinaga" [177] "America/Panama" "America/Pangnirtung" [179] "America/Paramaribo" "America/Phoenix" [181] "America/Port_of_Spain" "America/Port-au-Prince" [183] "America/Porto_Acre" "America/Porto_Velho" [185] "America/Puerto_Rico" "America/Punta_Arenas" [187] "America/Rainy_River" "America/Rankin_Inlet" [189] "America/Recife" "America/Regina" [191] "America/Resolute" "America/Rio_Branco" [193] "America/Rosario" "America/Santa_Isabel" [195] "America/Santarem" "America/Santiago" [197] "America/Santo_Domingo" "America/Sao_Paulo" [199] "America/Scoresbysund" "America/Shiprock" [201] "America/Sitka" "America/St_Barthelemy" [203] "America/St_Johns" "America/St_Kitts" [205] "America/St_Lucia" "America/St_Thomas" [207] "America/St_Vincent" "America/Swift_Current" [209] "America/Tegucigalpa" "America/Thule" [211] "America/Thunder_Bay" "America/Tijuana" [213] "America/Toronto" "America/Tortola" [215] "America/Vancouver" "America/Virgin" [217] "America/Whitehorse" "America/Winnipeg" [219] "America/Yakutat" "America/Yellowknife" [221] "Antarctica/Casey" "Antarctica/Davis" [223] "Antarctica/DumontDUrville" "Antarctica/Macquarie" [225] "Antarctica/Mawson" "Antarctica/McMurdo" [227] "Antarctica/Palmer" "Antarctica/Rothera" [229] "Antarctica/South_Pole" "Antarctica/Syowa" [231] "Antarctica/Troll" "Antarctica/Vostok" [233] "Arctic/Longyearbyen" "Asia/Aden" [235] "Asia/Almaty" "Asia/Amman" [237] "Asia/Anadyr" "Asia/Aqtau" [239] "Asia/Aqtobe" "Asia/Ashgabat" [241] "Asia/Ashkhabad" "Asia/Atyrau" [243] "Asia/Baghdad" "Asia/Bahrain" [245] "Asia/Baku" "Asia/Bangkok" [247] "Asia/Barnaul" "Asia/Beirut" [249] "Asia/Bishkek" "Asia/Brunei" [251] "Asia/Calcutta" "Asia/Chita" [253] "Asia/Choibalsan" "Asia/Chongqing" [255] "Asia/Chungking" "Asia/Colombo" [257] "Asia/Dacca" "Asia/Damascus" [259] "Asia/Dhaka" "Asia/Dili" [261] "Asia/Dubai" "Asia/Dushanbe" [263] "Asia/Famagusta" "Asia/Gaza" [265] "Asia/Harbin" "Asia/Hebron" [267] "Asia/Ho_Chi_Minh" "Asia/Hong_Kong" [269] "Asia/Hovd" "Asia/Irkutsk" [271] "Asia/Istanbul" "Asia/Jakarta" [273] "Asia/Jayapura" "Asia/Jerusalem" [275] "Asia/Kabul" "Asia/Kamchatka" [277] "Asia/Karachi" "Asia/Kashgar" [279] "Asia/Kathmandu" "Asia/Katmandu" [281] "Asia/Khandyga" "Asia/Kolkata" [283] "Asia/Krasnoyarsk" "Asia/Kuala_Lumpur" [285] "Asia/Kuching" "Asia/Kuwait" [287] "Asia/Macao" "Asia/Macau" [289] "Asia/Magadan" "Asia/Makassar" [291] "Asia/Manila" "Asia/Muscat" [293] "Asia/Nicosia" "Asia/Novokuznetsk" [295] "Asia/Novosibirsk" "Asia/Omsk" [297] "Asia/Oral" "Asia/Phnom_Penh" [299] "Asia/Pontianak" "Asia/Pyongyang" [301] "Asia/Qatar" "Asia/Qostanay" [303] "Asia/Qyzylorda" "Asia/Rangoon" [305] "Asia/Riyadh" "Asia/Saigon" [307] "Asia/Sakhalin" "Asia/Samarkand" [309] "Asia/Seoul" "Asia/Shanghai" [311] "Asia/Singapore" "Asia/Srednekolymsk" [313] "Asia/Taipei" "Asia/Tashkent" [315] "Asia/Tbilisi" "Asia/Tehran" [317] "Asia/Tel_Aviv" "Asia/Thimbu" [319] "Asia/Thimphu" "Asia/Tokyo" [321] "Asia/Tomsk" "Asia/Ujung_Pandang" [323] "Asia/Ulaanbaatar" "Asia/Ulan_Bator" [325] "Asia/Urumqi" "Asia/Ust-Nera" [327] "Asia/Vientiane" "Asia/Vladivostok" [329] "Asia/Yakutsk" "Asia/Yangon" [331] "Asia/Yekaterinburg" "Asia/Yerevan" [333] "Atlantic/Azores" "Atlantic/Bermuda" [335] "Atlantic/Canary" "Atlantic/Cape_Verde" [337] "Atlantic/Faeroe" "Atlantic/Faroe" [339] "Atlantic/Jan_Mayen" "Atlantic/Madeira" [341] "Atlantic/Reykjavik" "Atlantic/South_Georgia" [343] "Atlantic/St_Helena" "Atlantic/Stanley" [345] "Australia/ACT" "Australia/Adelaide" [347] "Australia/Brisbane" "Australia/Broken_Hill" [349] "Australia/Canberra" "Australia/Currie" [351] "Australia/Darwin" "Australia/Eucla" [353] "Australia/Hobart" "Australia/LHI" [355] "Australia/Lindeman" "Australia/Lord_Howe" [357] "Australia/Melbourne" "Australia/North" [359] "Australia/NSW" "Australia/Perth" [361] "Australia/Queensland" "Australia/South" [363] "Australia/Sydney" "Australia/Tasmania" [365] "Australia/Victoria" "Australia/West" [367] "Australia/Yancowinna" "Brazil/Acre" [369] "Brazil/DeNoronha" "Brazil/East" [371] "Brazil/West" "Canada/Atlantic" [373] "Canada/Central" "Canada/Eastern" [375] "Canada/Mountain" "Canada/Newfoundland" [377] "Canada/Pacific" "Canada/Saskatchewan" [379] "Canada/Yukon" "CET" [381] "Chile/Continental" "Chile/EasterIsland" [383] "CST6CDT" "Cuba" [385] "EET" "Egypt" [387] "Eire" "EST" [389] "EST5EDT" "Etc/GMT" [391] "Etc/GMT-0" "Etc/GMT-1" [393] "Etc/GMT-10" "Etc/GMT-11" [395] "Etc/GMT-12" "Etc/GMT-13" [397] "Etc/GMT-14" "Etc/GMT-2" [399] "Etc/GMT-3" "Etc/GMT-4" [401] "Etc/GMT-5" "Etc/GMT-6" [403] "Etc/GMT-7" "Etc/GMT-8" [405] "Etc/GMT-9" "Etc/GMT+0" [407] "Etc/GMT+1" "Etc/GMT+10" [409] "Etc/GMT+11" "Etc/GMT+12" [411] "Etc/GMT+2" "Etc/GMT+3" [413] "Etc/GMT+4" "Etc/GMT+5" [415] "Etc/GMT+6" "Etc/GMT+7" [417] "Etc/GMT+8" "Etc/GMT+9" [419] "Etc/GMT0" "Etc/Greenwich" [421] "Etc/UCT" "Etc/Universal" [423] "Etc/UTC" "Etc/Zulu" [425] "Europe/Amsterdam" "Europe/Andorra" [427] "Europe/Astrakhan" "Europe/Athens" [429] "Europe/Belfast" "Europe/Belgrade" [431] "Europe/Berlin" "Europe/Bratislava" [433] "Europe/Brussels" "Europe/Bucharest" [435] "Europe/Budapest" "Europe/Busingen" [437] "Europe/Chisinau" "Europe/Copenhagen" [439] "Europe/Dublin" "Europe/Gibraltar" [441] "Europe/Guernsey" "Europe/Helsinki" [443] "Europe/Isle_of_Man" "Europe/Istanbul" [445] "Europe/Jersey" "Europe/Kaliningrad" [447] "Europe/Kiev" "Europe/Kirov" [449] "Europe/Lisbon" "Europe/Ljubljana" [451] "Europe/London" "Europe/Luxembourg" [453] "Europe/Madrid" "Europe/Malta" [455] "Europe/Mariehamn" "Europe/Minsk" [457] "Europe/Monaco" "Europe/Moscow" [459] "Europe/Nicosia" "Europe/Oslo" [461] "Europe/Paris" "Europe/Podgorica" [463] "Europe/Prague" "Europe/Riga" [465] "Europe/Rome" "Europe/Samara" [467] "Europe/San_Marino" "Europe/Sarajevo" [469] "Europe/Saratov" "Europe/Simferopol" [471] "Europe/Skopje" "Europe/Sofia" [473] "Europe/Stockholm" "Europe/Tallinn" [475] "Europe/Tirane" "Europe/Tiraspol" [477] "Europe/Ulyanovsk" "Europe/Uzhgorod" [479] "Europe/Vaduz" "Europe/Vatican" [481] "Europe/Vienna" "Europe/Vilnius" [483] "Europe/Volgograd" "Europe/Warsaw" [485] "Europe/Zagreb" "Europe/Zaporozhye" [487] "Europe/Zurich" "GB" [489] "GB-Eire" "GMT" [491] "GMT-0" "GMT+0" [493] "GMT0" "Greenwich" [495] "Hongkong" "HST" [497] "Iceland" "Indian/Antananarivo" [499] "Indian/Chagos" "Indian/Christmas" [501] "Indian/Cocos" "Indian/Comoro" [503] "Indian/Kerguelen" "Indian/Mahe" [505] "Indian/Maldives" "Indian/Mauritius" [507] "Indian/Mayotte" "Indian/Reunion" [509] "Iran" "Israel" [511] "Jamaica" "Japan" [513] "Kwajalein" "Libya" [515] "MET" "Mexico/BajaNorte" [517] "Mexico/BajaSur" "Mexico/General" [519] "MST" "MST7MDT" [521] "Navajo" "NZ" [523] "NZ-CHAT" "Pacific/Apia" [525] "Pacific/Auckland" "Pacific/Bougainville" [527] "Pacific/Chatham" "Pacific/Chuuk" [529] "Pacific/Easter" "Pacific/Efate" [531] "Pacific/Enderbury" "Pacific/Fakaofo" [533] "Pacific/Fiji" "Pacific/Funafuti" [535] "Pacific/Galapagos" "Pacific/Gambier" [537] "Pacific/Guadalcanal" "Pacific/Guam" [539] "Pacific/Honolulu" "Pacific/Johnston" [541] "Pacific/Kiritimati" "Pacific/Kosrae" [543] "Pacific/Kwajalein" "Pacific/Majuro" [545] "Pacific/Marquesas" "Pacific/Midway" [547] "Pacific/Nauru" "Pacific/Niue" [549] "Pacific/Norfolk" "Pacific/Noumea" [551] "Pacific/Pago_Pago" "Pacific/Palau" [553] "Pacific/Pitcairn" "Pacific/Pohnpei" [555] "Pacific/Ponape" "Pacific/Port_Moresby" [557] "Pacific/Rarotonga" "Pacific/Saipan" [559] "Pacific/Samoa" "Pacific/Tahiti" [561] "Pacific/Tarawa" "Pacific/Tongatapu" [563] "Pacific/Truk" "Pacific/Wake" [565] "Pacific/Wallis" "Pacific/Yap" [567] "Poland" "Portugal" [569] "PRC" "PST8PDT" [571] "ROC" "ROK" [573] "Singapore" "Turkey" [575] "UCT" "Universal" [577] "US/Alaska" "US/Aleutian" [579] "US/Arizona" "US/Central" [581] "US/East-Indiana" "US/Eastern" [583] "US/Hawaii" "US/Indiana-Starke" [585] "US/Michigan" "US/Mountain" [587] "US/Pacific" "US/Pacific-New" [589] "US/Samoa" "UTC" [591] "W-SU" "WET" [593] "Zulu" attr(,"Version") [1] "2019a" ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% * tibble(tz = .) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` # A tibble: 593 × 1 tz <chr> 1 Africa/Abidjan 2 Africa/Accra 3 Africa/Addis_Ababa 4 Africa/Algiers 5 Africa/Asmara 6 Africa/Asmera 7 Africa/Bamako 8 Africa/Bangui 9 Africa/Banjul 10 Africa/Bissau # … with 583 more rows ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% * filter(tz != "US/Pacific-New") ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` # A tibble: 592 × 1 tz <chr> 1 Africa/Abidjan 2 Africa/Accra 3 Africa/Addis_Ababa 4 Africa/Algiers 5 Africa/Asmara 6 Africa/Asmera 7 Africa/Bamako 8 Africa/Bangui 9 Africa/Banjul 10 Africa/Bissau # … with 582 more rows ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% * filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` # A tibble: 4 × 1 tz <chr> 1 Europe/Amsterdam 2 Europe/London 3 Europe/Stockholm 4 US/Eastern ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% * mutate(meeting_ny = meeting) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` # A tibble: 4 × 2 tz meeting_ny <chr> <dttm> 1 Europe/Amsterdam 2009-08-07 11:00:00 2 Europe/London 2009-08-07 11:00:00 3 Europe/Stockholm 2009-08-07 11:00:00 4 US/Eastern 2009-08-07 11:00:00 ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% * mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` # A tibble: 4 × 3 tz meeting_ny local_time <chr> <dttm> <list> 1 Europe/Amsterdam 2009-08-07 11:00:00 <chr [1]> 2 Europe/London 2009-08-07 11:00:00 <chr [1]> 3 Europe/Stockholm 2009-08-07 11:00:00 <chr [1]> 4 US/Eastern 2009-08-07 11:00:00 <chr [1]> ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% * unnest(local_time) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` # A tibble: 4 × 3 tz meeting_ny local_time <chr> <dttm> <chr> 1 Europe/Amsterdam 2009-08-07 11:00:00 2009-08-07 17:00:00 2 Europe/London 2009-08-07 11:00:00 2009-08-07 16:00:00 3 Europe/Stockholm 2009-08-07 11:00:00 2009-08-07 17:00:00 4 US/Eastern 2009-08-07 11:00:00 2009-08-07 11:00:00 ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% * group_by(local_time) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` # A tibble: 4 × 3 # Groups: local_time [3] tz meeting_ny local_time <chr> <dttm> <chr> 1 Europe/Amsterdam 2009-08-07 11:00:00 2009-08-07 17:00:00 2 Europe/London 2009-08-07 11:00:00 2009-08-07 16:00:00 3 Europe/Stockholm 2009-08-07 11:00:00 2009-08-07 17:00:00 4 US/Eastern 2009-08-07 11:00:00 2009-08-07 11:00:00 ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% * summarise(locations = paste(tz, collapse = "\n")) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ``` # A tibble: 3 × 2 local_time locations <chr> <chr> 1 2009-08-07 11:00:00 "US/Eastern" 2 2009-08-07 16:00:00 "Europe/London" 3 2009-08-07 17:00:00 "Europe/Amsterdam\nEurope/Stockholm" ``` ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% * ggplot() ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_16_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + * aes(x = locations %>% paste(local_time, sep = "\n")) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_17_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + * aes(y = 1) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_18_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + * aes(label = locations) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_19_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + aes(label = locations) + * geom_tile(aes(y = 0), fill = c('cadetblue'), alpha = .7, * color = "oldlace") ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_20_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + aes(label = locations) + geom_tile(aes(y = 0), fill = c('cadetblue'), alpha = .7, color = "oldlace") + * geom_label(aes(y = 0, * label = hour(local_time) %>% * paste0(":00"))) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_21_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + aes(label = locations) + geom_tile(aes(y = 0), fill = c('cadetblue'), alpha = .7, color = "oldlace") + geom_label(aes(y = 0, label = hour(local_time) %>% paste0(":00"))) + * coord_polar() ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_22_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + aes(label = locations) + geom_tile(aes(y = 0), fill = c('cadetblue'), alpha = .7, color = "oldlace") + geom_label(aes(y = 0, label = hour(local_time) %>% paste0(":00"))) + coord_polar() + * geomtextpath::coord_curvedpolar() ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_23_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + aes(label = locations) + geom_tile(aes(y = 0), fill = c('cadetblue'), alpha = .7, color = "oldlace") + geom_label(aes(y = 0, label = hour(local_time) %>% paste0(":00"))) + coord_polar() + geomtextpath::coord_curvedpolar() + * theme_minimal(base_size = 18) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_24_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + aes(label = locations) + geom_tile(aes(y = 0), fill = c('cadetblue'), alpha = .7, color = "oldlace") + geom_label(aes(y = 0, label = hour(local_time) %>% paste0(":00"))) + coord_polar() + geomtextpath::coord_curvedpolar() + theme_minimal(base_size = 18) + * theme(axis.text.y = element_blank()) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_25_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + aes(label = locations) + geom_tile(aes(y = 0), fill = c('cadetblue'), alpha = .7, color = "oldlace") + geom_label(aes(y = 0, label = hour(local_time) %>% paste0(":00"))) + coord_polar() + geomtextpath::coord_curvedpolar() + theme_minimal(base_size = 18) + theme(axis.text.y = element_blank()) + * labs(y = NULL) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_26_output-1.png)<!-- --> ] --- count: false .panel1-meet_times-auto[ ```r library(lubridate) ymd_hms("2009-08-07 11:00:00", tz = "America/New_York") -> meeting lubridate::with_tz(meeting, tz = "Europe/London") time_to_local <- function(x, tz){ lubridate::with_tz(x, tz = tz) %>% as.character() } library(lubridate) OlsonNames() %>% tibble(tz = .) %>% filter(tz != "US/Pacific-New") %>% filter(tz %>% str_detect("Amsterdam|Stockholm|US/Eastern|British|Europe/London")) %>% mutate(meeting_ny = meeting) %>% mutate(local_time = purrr::map2(meeting_ny, tz, time_to_local)) %>% unnest(local_time) %>% group_by(local_time) %>% summarise(locations = paste(tz, collapse = "\n")) %>% ggplot() + aes(x = locations %>% paste(local_time, sep = "\n")) + aes(y = 1) + aes(label = locations) + geom_tile(aes(y = 0), fill = c('cadetblue'), alpha = .7, color = "oldlace") + geom_label(aes(y = 0, label = hour(local_time) %>% paste0(":00"))) + coord_polar() + geomtextpath::coord_curvedpolar() + theme_minimal(base_size = 18) + theme(axis.text.y = element_blank()) + labs(y = NULL) + * labs(x = NULL) ``` ] .panel2-meet_times-auto[ ``` [1] "2009-08-07 16:00:00 BST" ``` ![](extenders_files/figure-html/meet_times_auto_27_output-1.png)<!-- --> ] <style> .panel1-meet_times-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-meet_times-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-meet_times-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> <style type="text/css"> .remark-code{line-height: 1.5; font-size: 60%} @media print { .has-continuation { display: block; } } code.r.hljs.remark-code{ position: relative; overflow-x: hidden; } code.r.hljs.remark-code:hover{ overflow-x:visible; width: 500px; border-style: solid; } </style>