class: center <!-- badges: start --> <!-- badges: end --> <img src="circle_pack_and_beyond_talk_files/figure-html/cars-1.png" width="40%" style="display: block; margin: auto;" /> ## {ggcirclepack} and beyond: ##experiments in the compute_panel space --- ### Critical moment in my extension journey started with TLP "extend your ability to extend". <img src="circles_are_just_the_best.png" width="70%" /> --- ## Critical moment in my extension journey started with TLP "extend your ability to extend". ## Message 1: YOU can be an extender -- ## Message 2: "where" aesthetics need not only be x and y, in geom_circle() example -- ### - aes(x0 = ?, y0 = ?) -- ### - but ggplot2 actually renders x and y, it computes them for you! --- # Today I'll present on ggcirclepack. -- ## Background: ggplot2 grammar guide walk through (reference from data to viz gallery) https://evamaerey.github.io/ggplot2_grammar_guide/geoms_single_series.html#77 <img src="data_to_viz_circlepack.png" width="70%" /> --- count: false .panel1-background-auto[ ```r *gapminder::gapminder ``` ] .panel2-background-auto[ ``` #> # A tibble: 1,704 × 6 #> country continent year lifeExp pop gdpPercap #> <fct> <fct> <int> <dbl> <int> <dbl> #> 1 Afghanistan Asia 1952 28.8 8425333 779. #> 2 Afghanistan Asia 1957 30.3 9240934 821. #> 3 Afghanistan Asia 1962 32.0 10267083 853. #> 4 Afghanistan Asia 1967 34.0 11537966 836. #> 5 Afghanistan Asia 1972 36.1 13079460 740. #> 6 Afghanistan Asia 1977 38.4 14880372 786. #> 7 Afghanistan Asia 1982 39.9 12881816 978. #> 8 Afghanistan Asia 1987 40.8 13867957 852. #> 9 Afghanistan Asia 1992 41.7 16317921 649. #> 10 Afghanistan Asia 1997 41.8 22227415 635. #> # … with 1,694 more rows ``` ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% * filter(continent == "Americas") ``` ] .panel2-background-auto[ ``` #> # A tibble: 300 × 6 #> country continent year lifeExp pop gdpPercap #> <fct> <fct> <int> <dbl> <int> <dbl> #> 1 Argentina Americas 1952 62.5 17876956 5911. #> 2 Argentina Americas 1957 64.4 19610538 6857. #> 3 Argentina Americas 1962 65.1 21283783 7133. #> 4 Argentina Americas 1967 65.6 22934225 8053. #> 5 Argentina Americas 1972 67.1 24779799 9443. #> 6 Argentina Americas 1977 68.5 26983828 10079. #> 7 Argentina Americas 1982 69.9 29341374 8998. #> 8 Argentina Americas 1987 70.8 31620918 9140. #> 9 Argentina Americas 1992 71.9 33958947 9308. #> 10 Argentina Americas 1997 73.3 36203463 10967. #> # … with 290 more rows ``` ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% * filter(year == 2002) ``` ] .panel2-background-auto[ ``` #> # A tibble: 25 × 6 #> country continent year lifeExp pop gdpPercap #> <fct> <fct> <int> <dbl> <int> <dbl> #> 1 Argentina Americas 2002 74.3 38331121 8798. #> 2 Bolivia Americas 2002 63.9 8445134 3413. #> 3 Brazil Americas 2002 71.0 179914212 8131. #> 4 Canada Americas 2002 79.8 31902268 33329. #> 5 Chile Americas 2002 77.9 15497046 10779. #> 6 Colombia Americas 2002 71.7 41008227 5755. #> 7 Costa Rica Americas 2002 78.1 3834934 7723. #> 8 Cuba Americas 2002 77.2 11226999 6341. #> 9 Dominican Republic Americas 2002 70.8 8650322 4564. #> 10 Ecuador Americas 2002 74.2 12921234 5773. #> # … with 15 more rows ``` ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% * select(country, pop) ``` ] .panel2-background-auto[ ``` #> # A tibble: 25 × 2 #> country pop #> <fct> <int> #> 1 Argentina 38331121 #> 2 Bolivia 8445134 #> 3 Brazil 179914212 #> 4 Canada 31902268 #> 5 Chile 15497046 #> 6 Colombia 41008227 #> 7 Costa Rica 3834934 #> 8 Cuba 11226999 #> 9 Dominican Republic 8650322 #> 10 Ecuador 12921234 #> # … with 15 more rows ``` ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> *prep ``` ] .panel2-background-auto[ ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep *library(packcircles) ``` ] .panel2-background-auto[ ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius *circleProgressiveLayout( * prep$pop, * sizetype = 'area' * ) ``` ] .panel2-background-auto[ ``` #> x y radius #> 1 -3493.0180 0.0000 3493.0180 #> 2 1639.5639 0.0000 1639.5639 #> 3 2732.7743 -9142.0260 7567.5936 #> 4 1150.7522 4801.4069 3186.6608 #> 5 5273.8171 1302.3806 2221.0049 #> 6 10562.3302 -1160.6508 3612.9384 #> 7 -4573.1172 -4469.2048 1104.8518 #> 8 -7453.2262 -3646.6547 1890.4139 #> 9 -8636.6596 -299.9554 1659.3622 #> 10 -7908.2513 3314.7888 2028.0425 #> 11 -4769.2005 4746.5765 1422.1250 #> 12 -3084.4567 7593.9564 1886.3390 #> 13 -133.6785 9366.9797 1556.1460 #> 14 2869.9023 9116.0827 1457.8956 #> 15 4409.2334 7302.3944 920.9708 #> 16 10986.7220 8154.0495 5711.4249 #> 17 -5728.2786 -6555.5701 1279.9580 #> 18 -7982.0775 -6463.5726 975.7177 #> 19 -6893.5704 6556.3419 1368.6094 #> 20 -6631.4420 10836.0023 2919.0711 #> 21 -2614.0309 10551.5165 1108.4001 #> 22 -1083.9386 11293.7595 592.2196 #> 23 -18526.1513 -6598.5236 9569.2196 #> 24 -11041.9619 913.3993 1034.6512 #> 25 4129.4010 13162.9819 2780.4686 ``` ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> *pack ``` ] .panel2-background-auto[ ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines *pack ``` ] .panel2-background-auto[ ``` #> x y radius #> 1 -3493.0180 0.0000 3493.0180 #> 2 1639.5639 0.0000 1639.5639 #> 3 2732.7743 -9142.0260 7567.5936 #> 4 1150.7522 4801.4069 3186.6608 #> 5 5273.8171 1302.3806 2221.0049 #> 6 10562.3302 -1160.6508 3612.9384 #> 7 -4573.1172 -4469.2048 1104.8518 #> 8 -7453.2262 -3646.6547 1890.4139 #> 9 -8636.6596 -299.9554 1659.3622 #> 10 -7908.2513 3314.7888 2028.0425 #> 11 -4769.2005 4746.5765 1422.1250 #> 12 -3084.4567 7593.9564 1886.3390 #> 13 -133.6785 9366.9797 1556.1460 #> 14 2869.9023 9116.0827 1457.8956 #> 15 4409.2334 7302.3944 920.9708 #> 16 10986.7220 8154.0495 5711.4249 #> 17 -5728.2786 -6555.5701 1279.9580 #> 18 -7982.0775 -6463.5726 975.7177 #> 19 -6893.5704 6556.3419 1368.6094 #> 20 -6631.4420 10836.0023 2919.0711 #> 21 -2614.0309 10551.5165 1108.4001 #> 22 -1083.9386 11293.7595 592.2196 #> 23 -18526.1513 -6598.5236 9569.2196 #> 24 -11041.9619 913.3993 1034.6512 #> 25 4129.4010 13162.9819 2780.4686 ``` ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% * circleLayoutVertices(npoints = 50) ``` ] .panel2-background-auto[ ``` #> x y id #> 1 0.00000 0.000000e+00 1 #> 2 -27.54349 4.377912e+02 1 #> 3 -109.73958 8.686783e+02 1 #> 4 -245.29200 1.285866e+03 1 #> 5 -432.06299 1.682774e+03 1 #> 6 -667.10708 2.053144e+03 1 #> 7 -946.71746 2.391135e+03 1 #> 8 -1266.48453 2.691417e+03 1 #> 9 -1621.36536 2.949253e+03 1 #> 10 -2005.76327 3.160577e+03 1 #> 11 -2413.61608 3.322058e+03 1 #> 12 -2838.49170 3.431147e+03 1 #> 13 -3273.68959 3.486125e+03 1 #> 14 -3712.34642 3.486125e+03 1 #> 15 -4147.54431 3.431147e+03 1 #> 16 -4572.41993 3.322058e+03 1 #> 17 -4980.27273 3.160577e+03 1 #> 18 -5364.67064 2.949253e+03 1 #> 19 -5719.55147 2.691417e+03 1 #> 20 -6039.31854 2.391135e+03 1 #> 21 -6318.92893 2.053144e+03 1 #> 22 -6553.97301 1.682774e+03 1 #> 23 -6740.74401 1.285866e+03 1 #> 24 -6876.29642 8.686783e+02 1 #> 25 -6958.49251 4.377912e+02 1 #> 26 -6986.03600 -1.123440e-12 1 #> 27 -6958.49251 -4.377912e+02 1 #> 28 -6876.29642 -8.686783e+02 1 #> 29 -6740.74401 -1.285866e+03 1 #> 30 -6553.97301 -1.682774e+03 1 #> 31 -6318.92893 -2.053144e+03 1 #> 32 -6039.31854 -2.391135e+03 1 #> 33 -5719.55147 -2.691417e+03 1 #> 34 -5364.67064 -2.949253e+03 1 #> 35 -4980.27273 -3.160577e+03 1 #> 36 -4572.41993 -3.322058e+03 1 #> 37 -4147.54431 -3.431147e+03 1 #> 38 -3712.34642 -3.486125e+03 1 #> 39 -3273.68959 -3.486125e+03 1 #> 40 -2838.49170 -3.431147e+03 1 #> 41 -2413.61608 -3.322058e+03 1 #> 42 -2005.76327 -3.160577e+03 1 #> 43 -1621.36536 -2.949253e+03 1 #> 44 -1266.48453 -2.691417e+03 1 #> 45 -946.71746 -2.391135e+03 1 #> 46 -667.10708 -2.053144e+03 1 #> 47 -432.06299 -1.682774e+03 1 #> 48 -245.29200 -1.285866e+03 1 #> 49 -109.73958 -8.686783e+02 1 #> 50 -27.54349 -4.377912e+02 1 #> 51 0.00000 -8.555427e-13 1 #> 52 3279.12771 0.000000e+00 2 #> 53 3266.19926 2.054918e+02 2 #> 54 3227.61780 4.077430e+02 2 #> 55 3163.99178 6.035637e+02 2 #> 56 3076.32462 7.898659e+02 2 #> 57 2965.99888 9.637115e+02 2 #> 58 2834.75447 1.122359e+03 2 #> 59 2684.66119 1.263306e+03 2 #> 60 2518.08610 1.384330e+03 2 #> 61 2337.65620 1.483522e+03 2 #> 62 2146.21695 1.559318e+03 2 #> 63 1946.78749 1.610523e+03 2 #> 64 1742.51292 1.636329e+03 2 #> 65 1536.61479 1.636329e+03 2 #> 66 1332.34023 1.610523e+03 2 #> 67 1132.91076 1.559318e+03 2 #> 68 941.47152 1.483522e+03 2 #> 69 761.04161 1.384330e+03 2 #> 70 594.46652 1.263306e+03 2 #> 71 444.37324 1.122359e+03 2 #> 72 313.12883 9.637115e+02 2 #> 73 202.80310 7.898659e+02 2 #> 74 115.13594 6.035637e+02 2 #> 75 51.50991 4.077430e+02 2 #> 76 12.92845 2.054918e+02 2 #> 77 0.00000 -5.273240e-13 2 #> 78 12.92845 -2.054918e+02 2 #> 79 51.50991 -4.077430e+02 2 #> 80 115.13594 -6.035637e+02 2 #> 81 202.80310 -7.898659e+02 2 #> 82 313.12883 -9.637115e+02 2 #> 83 444.37324 -1.122359e+03 2 #> 84 594.46652 -1.263306e+03 2 #> 85 761.04161 -1.384330e+03 2 #> 86 941.47152 -1.483522e+03 2 #> 87 1132.91076 -1.559318e+03 2 #> 88 1332.34023 -1.610523e+03 2 #> 89 1536.61479 -1.636329e+03 2 #> 90 1742.51292 -1.636329e+03 2 #> 91 1946.78749 -1.610523e+03 2 #> 92 2146.21695 -1.559318e+03 2 #> 93 2337.65620 -1.483522e+03 2 #> 94 2518.08610 -1.384330e+03 2 #> 95 2684.66119 -1.263306e+03 2 #> 96 2834.75447 -1.122359e+03 2 #> 97 2965.99888 -9.637115e+02 2 #> 98 3076.32462 -7.898659e+02 2 #> 99 3163.99178 -6.035637e+02 2 #> 100 3227.61780 -4.077430e+02 2 #> 101 3266.19926 -2.054918e+02 2 #> 102 3279.12771 -4.015773e-13 2 #> 103 10300.36784 -9.142026e+03 3 #> 104 10240.69510 -8.193555e+03 3 #> 105 10062.61797 -7.260042e+03 3 #> 106 9768.94482 -6.356209e+03 3 #> 107 9364.30706 -5.496310e+03 3 #> 108 8855.08607 -4.693906e+03 3 #> 109 8249.31257 -3.961652e+03 3 #> 110 7556.53995 -3.311095e+03 3 #> 111 6787.69368 -2.752495e+03 3 #> 112 5954.89890 -2.294663e+03 3 #> 113 5071.28929 -1.944817e+03 3 #> 114 4150.79990 -1.708475e+03 3 #> 115 3207.94740 -1.589365e+03 3 #> 116 2257.60114 -1.589365e+03 3 #> 117 1314.74864 -1.708475e+03 3 #> 118 394.25925 -1.944817e+03 3 #> 119 -489.35035 -2.294663e+03 3 #> 120 -1322.14513 -2.752495e+03 3 #> 121 -2090.99141 -3.311095e+03 3 #> 122 -2783.76402 -3.961652e+03 3 #> 123 -3389.53753 -4.693906e+03 3 #> 124 -3898.75852 -5.496310e+03 3 #> 125 -4303.39628 -6.356209e+03 3 #> 126 -4597.06942 -7.260042e+03 3 #> 127 -4775.14656 -8.193555e+03 3 #> 128 -4834.81929 -9.142026e+03 3 #> 129 -4775.14656 -1.009050e+04 3 #> 130 -4597.06942 -1.102401e+04 3 #> 131 -4303.39628 -1.192784e+04 3 #> 132 -3898.75852 -1.278774e+04 3 #> 133 -3389.53753 -1.359015e+04 3 #> 134 -2783.76402 -1.432240e+04 3 #> 135 -2090.99141 -1.497296e+04 3 #> 136 -1322.14513 -1.553156e+04 3 #> 137 -489.35035 -1.598939e+04 3 #> 138 394.25925 -1.633924e+04 3 #> 139 1314.74864 -1.657558e+04 3 #> 140 2257.60114 -1.669469e+04 3 #> 141 3207.94740 -1.669469e+04 3 #> 142 4150.79990 -1.657558e+04 3 #> 143 5071.28929 -1.633924e+04 3 #> 144 5954.89890 -1.598939e+04 3 #> 145 6787.69368 -1.553156e+04 3 #> 146 7556.53995 -1.497296e+04 3 #> 147 8249.31257 -1.432240e+04 3 #> 148 8855.08607 -1.359015e+04 3 #> 149 9364.30706 -1.278774e+04 3 #> 150 9768.94482 -1.192784e+04 3 #> 151 10062.61797 -1.102401e+04 3 #> 152 10240.69510 -1.009050e+04 3 #> 153 10300.36784 -9.142026e+03 3 #> 154 4337.41301 4.801407e+03 4 #> 155 4312.28524 5.200801e+03 4 #> 156 4237.29820 5.593897e+03 4 #> 157 4113.63449 5.974495e+03 4 #> 158 3943.24435 6.336592e+03 4 #> 159 3728.81495 6.674479e+03 4 #> 160 3473.72795 6.982826e+03 4 #> 161 3182.00624 7.256771e+03 4 #> 162 2858.25044 7.491994e+03 4 #> 163 2507.56637 7.684784e+03 4 #> 164 2135.48453 7.832101e+03 4 #> 165 1747.87287 7.931623e+03 4 #> 166 1350.84426 7.981780e+03 4 #> 167 950.66009 7.981780e+03 4 #> 168 553.63148 7.931623e+03 4 #> 169 166.01982 7.832101e+03 4 #> 170 -206.06202 7.684784e+03 4 #> 171 -556.74609 7.491994e+03 4 #> 172 -880.50189 7.256771e+03 4 #> 173 -1172.22360 6.982826e+03 4 #> 174 -1427.31060 6.674479e+03 4 #> 175 -1641.74000 6.336592e+03 4 #> 176 -1812.13014 5.974495e+03 4 #> 177 -1935.79385 5.593897e+03 4 #> 178 -2010.78089 5.200801e+03 4 #> 179 -2035.90866 4.801407e+03 4 #> 180 -2010.78089 4.402012e+03 4 #> 181 -1935.79385 4.008917e+03 4 #> 182 -1812.13014 3.628319e+03 4 #> 183 -1641.74000 3.266221e+03 4 #> 184 -1427.31060 2.928335e+03 4 #> 185 -1172.22360 2.619987e+03 4 #> 186 -880.50189 2.346042e+03 4 #> 187 -556.74609 2.110820e+03 4 #> 188 -206.06202 1.918030e+03 4 #> 189 166.01982 1.770712e+03 4 #> 190 553.63148 1.671191e+03 4 #> 191 950.66009 1.621034e+03 4 #> 192 1350.84426 1.621034e+03 4 #> 193 1747.87287 1.671191e+03 4 #> 194 2135.48453 1.770712e+03 4 #> 195 2507.56637 1.918030e+03 4 #> 196 2858.25044 2.110820e+03 4 #> 197 3182.00624 2.346042e+03 4 #> 198 3473.72795 2.619987e+03 4 #> 199 3728.81495 2.928335e+03 4 #> 200 3943.24435 3.266221e+03 4 #> 201 4113.63449 3.628319e+03 4 #> 202 4237.29820 4.008917e+03 4 #> 203 4312.28524 4.402012e+03 4 #> 204 4337.41301 4.801407e+03 4 #> 205 7494.82200 1.302381e+03 5 #> 206 7477.30871 1.580746e+03 5 #> 207 7425.04505 1.854722e+03 5 #> 208 7338.85523 2.119987e+03 5 #> 209 7220.09852 2.372358e+03 5 #> 210 7070.64780 2.607855e+03 5 #> 211 6892.85998 2.822763e+03 5 #> 212 6689.53889 3.013694e+03 5 #> 213 6463.89102 3.177637e+03 5 #> 214 6219.47497 3.312006e+03 5 #> 215 5960.14533 3.414682e+03 5 #> 216 5689.99188 3.484045e+03 5 #> 217 5413.27511 3.519003e+03 5 #> 218 5134.35900 3.519003e+03 5 #> 219 4857.64223 3.484045e+03 5 #> 220 4587.48879 3.414682e+03 5 #> 221 4328.15915 3.312006e+03 5 #> 222 4083.74310 3.177637e+03 5 #> 223 3858.09523 3.013694e+03 5 #> 224 3654.77414 2.822763e+03 5 #> 225 3476.98632 2.607855e+03 5 #> 226 3327.53559 2.372358e+03 5 #> 227 3208.77889 2.119987e+03 5 #> 228 3122.58907 1.854722e+03 5 #> 229 3070.32540 1.580746e+03 5 #> 230 3052.81212 1.302381e+03 5 #> 231 3070.32540 1.024015e+03 5 #> 232 3122.58907 7.500391e+02 5 #> 233 3208.77889 4.847741e+02 5 #> 234 3327.53559 2.324033e+02 5 #> 235 3476.98632 -3.093392e+00 5 #> 236 3654.77414 -2.180019e+02 5 #> 237 3858.09523 -4.089332e+02 5 #> 238 4083.74310 -5.728759e+02 5 #> 239 4328.15915 -7.072448e+02 5 #> 240 4587.48879 -8.099207e+02 5 #> 241 4857.64223 -8.792843e+02 5 #> 242 5134.35900 -9.142417e+02 5 #> 243 5413.27511 -9.142417e+02 5 #> 244 5689.99188 -8.792843e+02 5 #> 245 5960.14533 -8.099207e+02 5 #> 246 6219.47497 -7.072448e+02 5 #> 247 6463.89102 -5.728759e+02 5 #> 248 6689.53889 -4.089332e+02 5 #> 249 6892.85998 -2.180019e+02 5 #> 250 7070.64780 -3.093392e+00 5 #> 251 7220.09852 2.324033e+02 5 #> 252 7338.85523 4.847741e+02 5 #> 253 7425.04505 7.500391e+02 5 #> 254 7477.30871 1.024015e+03 5 #> 255 7494.82200 1.302381e+03 5 #> 256 14175.26866 -1.160651e+03 6 #> 257 14146.77956 -7.078296e+02 6 #> 258 14061.76155 -2.621496e+02 6 #> 259 13921.55543 1.693605e+02 6 #> 260 13728.37231 5.798955e+02 6 #> 261 13485.25882 9.629811e+02 6 #> 262 13196.04900 1.312576e+03 6 #> 263 12865.30386 1.623166e+03 6 #> 264 12498.23945 1.889854e+03 6 #> 265 12100.64460 2.108434e+03 6 #> 266 11678.78961 2.275458e+03 6 #> 267 11239.32738 2.388293e+03 6 #> 268 10789.18851 2.445158e+03 6 #> 269 10335.47195 2.445158e+03 6 #> 270 9885.33308 2.388293e+03 6 #> 271 9445.87086 2.275458e+03 6 #> 272 9024.01587 2.108434e+03 6 #> 273 8626.42101 1.889854e+03 6 #> 274 8259.35661 1.623166e+03 6 #> 275 7928.61147 1.312576e+03 6 #> 276 7639.40165 9.629811e+02 6 #> 277 7396.28815 5.798955e+02 6 #> 278 7203.10504 1.693605e+02 6 #> 279 7062.89891 -2.621496e+02 6 #> 280 6977.88090 -7.078296e+02 6 #> 281 6949.39181 -1.160651e+03 6 #> 282 6977.88090 -1.613472e+03 6 #> 283 7062.89891 -2.059152e+03 6 #> 284 7203.10504 -2.490662e+03 6 #> 285 7396.28815 -2.901197e+03 6 #> 286 7639.40165 -3.284283e+03 6 #> 287 7928.61147 -3.633877e+03 6 #> 288 8259.35661 -3.944468e+03 6 #> 289 8626.42101 -4.211156e+03 6 #> 290 9024.01587 -4.429735e+03 6 #> 291 9445.87086 -4.596759e+03 6 #> 292 9885.33308 -4.709594e+03 6 #> 293 10335.47195 -4.766460e+03 6 #> 294 10789.18851 -4.766460e+03 6 #> 295 11239.32738 -4.709594e+03 6 #> 296 11678.78961 -4.596759e+03 6 #> 297 12100.64460 -4.429735e+03 6 #> 298 12498.23945 -4.211156e+03 6 #> 299 12865.30386 -3.944468e+03 6 #> 300 13196.04900 -3.633877e+03 6 #> 301 13485.25882 -3.284283e+03 6 #> 302 13728.37231 -2.901197e+03 6 #> 303 13921.55543 -2.490662e+03 6 #> 304 14061.76155 -2.059152e+03 6 #> 305 14146.77956 -1.613472e+03 6 #> 306 14175.26866 -1.160651e+03 6 #> 307 -3468.26547 -4.469205e+03 7 #> 308 -3476.97756 -4.330730e+03 7 #> 309 -3502.97642 -4.194439e+03 7 #> 310 -3545.85205 -4.062482e+03 7 #> 311 -3604.92825 -3.936938e+03 7 #> 312 -3679.27338 -3.819789e+03 7 #> 313 -3767.71496 -3.712882e+03 7 #> 314 -3868.85822 -3.617902e+03 7 #> 315 -3981.10805 -3.536348e+03 7 #> 316 -4102.69423 -3.469505e+03 7 #> 317 -4231.69926 -3.418428e+03 7 #> 318 -4366.08866 -3.383923e+03 7 #> 319 -4503.74301 -3.366533e+03 7 #> 320 -4642.49145 -3.366533e+03 7 #> 321 -4780.14580 -3.383923e+03 7 #> 322 -4914.53520 -3.418428e+03 7 #> 323 -5043.54023 -3.469505e+03 7 #> 324 -5165.12641 -3.536348e+03 7 #> 325 -5277.37625 -3.617902e+03 7 #> 326 -5378.51950 -3.712882e+03 7 #> 327 -5466.96108 -3.819789e+03 7 #> 328 -5541.30621 -3.936938e+03 7 #> 329 -5600.38241 -4.062482e+03 7 #> 330 -5643.25804 -4.194439e+03 7 #> 331 -5669.25690 -4.330730e+03 7 #> 332 -5677.96899 -4.469205e+03 7 #> 333 -5669.25690 -4.607679e+03 7 #> 334 -5643.25804 -4.743970e+03 7 #> 335 -5600.38241 -4.875928e+03 7 #> 336 -5541.30621 -5.001471e+03 7 #> 337 -5466.96108 -5.118620e+03 7 #> 338 -5378.51950 -5.225528e+03 7 #> 339 -5277.37625 -5.320508e+03 7 #> 340 -5165.12641 -5.402062e+03 7 #> 341 -5043.54023 -5.468905e+03 7 #> 342 -4914.53520 -5.519981e+03 7 #> 343 -4780.14580 -5.554487e+03 7 #> 344 -4642.49145 -5.571876e+03 7 #> 345 -4503.74301 -5.571876e+03 7 #> 346 -4366.08866 -5.554487e+03 7 #> 347 -4231.69926 -5.519981e+03 7 #> 348 -4102.69423 -5.468905e+03 7 #> 349 -3981.10805 -5.402062e+03 7 #> 350 -3868.85822 -5.320508e+03 7 #> 351 -3767.71496 -5.225528e+03 7 #> 352 -3679.27338 -5.118620e+03 7 #> 353 -3604.92825 -5.001471e+03 7 #> 354 -3545.85205 -4.875928e+03 7 #> 355 -3502.97642 -4.743970e+03 7 #> 356 -3476.97756 -4.607679e+03 7 #> 357 -3468.26547 -4.469205e+03 7 #> 358 -5562.81228 -3.646655e+03 8 #> 359 -5577.71876 -3.409723e+03 8 #> 360 -5622.20311 -3.176528e+03 8 #> 361 -5695.56379 -2.950747e+03 8 #> 362 -5796.64385 -2.735941e+03 8 #> 363 -5923.84921 -2.535497e+03 8 #> 364 -6075.17376 -2.352577e+03 8 #> 365 -6248.23102 -2.190066e+03 8 #> 366 -6440.29177 -2.050525e+03 8 #> 367 -6648.32710 -1.936157e+03 8 #> 368 -6869.05617 -1.848764e+03 8 #> 369 -7098.99795 -1.789725e+03 8 #> 370 -7334.52612 -1.759971e+03 8 #> 371 -7571.92627 -1.759971e+03 8 #> 372 -7807.45444 -1.789725e+03 8 #> 373 -8037.39622 -1.848764e+03 8 #> 374 -8258.12529 -1.936157e+03 8 #> 375 -8466.16063 -2.050525e+03 8 #> 376 -8658.22138 -2.190066e+03 8 #> 377 -8831.27863 -2.352577e+03 8 #> 378 -8982.60318 -2.535497e+03 8 #> 379 -9109.80854 -2.735941e+03 8 #> 380 -9210.88860 -2.950747e+03 8 #> 381 -9284.24928 -3.176528e+03 8 #> 382 -9328.73363 -3.409723e+03 8 #> 383 -9343.64011 -3.646655e+03 8 #> 384 -9328.73363 -3.883586e+03 8 #> 385 -9284.24928 -4.116781e+03 8 #> 386 -9210.88860 -4.342562e+03 8 #> 387 -9109.80854 -4.557369e+03 8 #> 388 -8982.60318 -4.757812e+03 8 #> 389 -8831.27863 -4.940732e+03 8 #> 390 -8658.22138 -5.103244e+03 8 #> 391 -8466.16063 -5.242784e+03 8 #> 392 -8258.12529 -5.357152e+03 8 #> 393 -8037.39622 -5.444545e+03 8 #> 394 -7807.45444 -5.503584e+03 8 #> 395 -7571.92627 -5.533338e+03 8 #> 396 -7334.52612 -5.533338e+03 8 #> 397 -7098.99795 -5.503584e+03 8 #> 398 -6869.05617 -5.444545e+03 8 #> 399 -6648.32710 -5.357152e+03 8 #> 400 -6440.29177 -5.242784e+03 8 #> 401 -6248.23102 -5.103244e+03 8 #> 402 -6075.17376 -4.940732e+03 8 #> 403 -5923.84921 -4.757812e+03 8 #> 404 -5796.64385 -4.557369e+03 8 #> 405 -5695.56379 -4.342562e+03 8 #> 406 -5622.20311 -4.116781e+03 8 #> 407 -5577.71876 -3.883586e+03 8 #> 408 -5562.81228 -3.646655e+03 8 #> 409 -6977.29736 -2.999554e+02 9 #> 410 -6990.38193 -9.198215e+01 9 #> 411 -7029.42928 1.127112e+02 9 #> 412 -7093.82361 3.108966e+02 9 #> 413 -7182.54939 4.994485e+02 9 #> 414 -7294.20735 6.753933e+02 9 #> 415 -7427.03659 8.359562e+02 9 #> 416 -7578.94230 9.786052e+02 9 #> 417 -7747.52885 1.101090e+03 9 #> 418 -7930.13752 1.201480e+03 9 #> 419 -8123.88846 1.278192e+03 9 #> 420 -8325.72612 1.330015e+03 9 #> 421 -8532.46738 1.356132e+03 9 #> 422 -8740.85181 1.356132e+03 9 #> 423 -8947.59307 1.330015e+03 9 #> 424 -9149.43072 1.278192e+03 9 #> 425 -9343.18167 1.201480e+03 9 #> 426 -9525.79034 1.101090e+03 9 #> 427 -9694.37689 9.786052e+02 9 #> 428 -9846.28260 8.359562e+02 9 #> 429 -9979.11184 6.753933e+02 9 #> 430 -10090.76980 4.994485e+02 9 #> 431 -10179.49558 3.108966e+02 9 #> 432 -10243.88991 1.127112e+02 9 #> 433 -10282.93726 -9.198215e+01 9 #> 434 -10296.02182 -2.999554e+02 9 #> 435 -10282.93726 -5.079286e+02 9 #> 436 -10243.88991 -7.126220e+02 9 #> 437 -10179.49558 -9.108074e+02 9 #> 438 -10090.76980 -1.099359e+03 9 #> 439 -9979.11184 -1.275304e+03 9 #> 440 -9846.28260 -1.435867e+03 9 #> 441 -9694.37689 -1.578516e+03 9 #> 442 -9525.79034 -1.701001e+03 9 #> 443 -9343.18167 -1.801391e+03 9 #> 444 -9149.43072 -1.878103e+03 9 #> 445 -8947.59307 -1.929926e+03 9 #> 446 -8740.85181 -1.956043e+03 9 #> 447 -8532.46738 -1.956043e+03 9 #> 448 -8325.72612 -1.929926e+03 9 #> 449 -8123.88846 -1.878103e+03 9 #> 450 -7930.13752 -1.801391e+03 9 #> 451 -7747.52885 -1.701001e+03 9 #> 452 -7578.94230 -1.578516e+03 9 #> 453 -7427.03659 -1.435867e+03 9 #> 454 -7294.20735 -1.275304e+03 9 #> 455 -7182.54939 -1.099359e+03 9 #> 456 -7093.82361 -9.108074e+02 9 #> 457 -7029.42928 -7.126220e+02 9 #> 458 -6990.38193 -5.079286e+02 9 #> 459 -6977.29736 -2.999554e+02 9 #> 460 -5880.20875 3.314789e+03 10 #> 461 -5896.20047 3.568970e+03 10 #> 462 -5943.92344 3.819142e+03 10 #> 463 -6022.62502 4.061361e+03 10 #> 464 -6131.06406 4.291806e+03 10 #> 465 -6267.53041 4.506842e+03 10 #> 466 -6429.87190 4.703079e+03 10 #> 467 -6615.52832 4.877422e+03 10 #> 468 -6821.57175 5.027122e+03 10 #> 469 -7044.75277 5.149817e+03 10 #> 470 -7281.55168 5.243572e+03 10 #> 471 -7528.23401 5.306909e+03 10 #> 472 -7780.90944 5.338829e+03 10 #> 473 -8035.59313 5.338829e+03 10 #> 474 -8288.26856 5.306909e+03 10 #> 475 -8534.95089 5.243572e+03 10 #> 476 -8771.74980 5.149817e+03 10 #> 477 -8994.93082 5.027122e+03 10 #> 478 -9200.97425 4.877422e+03 10 #> 479 -9386.63067 4.703079e+03 10 #> 480 -9548.97216 4.506842e+03 10 #> 481 -9685.43851 4.291806e+03 10 #> 482 -9793.87755 4.061361e+03 10 #> 483 -9872.57913 3.819142e+03 10 #> 484 -9920.30210 3.568970e+03 10 #> 485 -9936.29382 3.314789e+03 10 #> 486 -9920.30210 3.060608e+03 10 #> 487 -9872.57913 2.810435e+03 10 #> 488 -9793.87755 2.568217e+03 10 #> 489 -9685.43851 2.337772e+03 10 #> 490 -9548.97216 2.122735e+03 10 #> 491 -9386.63067 1.926498e+03 10 #> 492 -9200.97425 1.752155e+03 10 #> 493 -8994.93082 1.602456e+03 10 #> 494 -8771.74980 1.479761e+03 10 #> 495 -8534.95089 1.386006e+03 10 #> 496 -8288.26856 1.322668e+03 10 #> 497 -8035.59313 1.290748e+03 10 #> 498 -7780.90944 1.290748e+03 10 #> 499 -7528.23401 1.322668e+03 10 #> 500 -7281.55168 1.386006e+03 10 #> 501 -7044.75277 1.479761e+03 10 #> 502 -6821.57175 1.602456e+03 10 #> 503 -6615.52832 1.752155e+03 10 #> 504 -6429.87190 1.926498e+03 10 #> 505 -6267.53041 2.122735e+03 10 #> 506 -6131.06406 2.337772e+03 10 #> 507 -6022.62502 2.568217e+03 10 #> 508 -5943.92344 2.810435e+03 10 #> 509 -5896.20047 3.060608e+03 10 #> 510 -5880.20875 3.314789e+03 10 #> 511 -3347.07554 4.746577e+03 11 #> 512 -3358.28942 4.924816e+03 11 #> 513 -3391.75421 5.100245e+03 11 #> 514 -3446.94215 5.270096e+03 11 #> 515 -3522.98290 5.431690e+03 11 #> 516 -3618.67724 5.582481e+03 11 #> 517 -3732.51602 5.720088e+03 11 #> 518 -3862.70394 5.842343e+03 11 #> 519 -4007.18785 5.947316e+03 11 #> 520 -4163.68915 6.033354e+03 11 #> 521 -4329.73973 6.099098e+03 11 #> 522 -4502.72087 6.143512e+03 11 #> 523 -4679.90456 6.165895e+03 11 #> 524 -4858.49649 6.165895e+03 11 #> 525 -5035.68017 6.143512e+03 11 #> 526 -5208.66131 6.099098e+03 11 #> 527 -5374.71189 6.033354e+03 11 #> 528 -5531.21320 5.947316e+03 11 #> 529 -5675.69710 5.842343e+03 11 #> 530 -5805.88502 5.720088e+03 11 #> 531 -5919.72380 5.582481e+03 11 #> 532 -6015.41815 5.431690e+03 11 #> 533 -6091.45889 5.270096e+03 11 #> 534 -6146.64684 5.100245e+03 11 #> 535 -6180.11163 4.924816e+03 11 #> 536 -6191.32551 4.746577e+03 11 #> 537 -6180.11163 4.568337e+03 11 #> 538 -6146.64684 4.392908e+03 11 #> 539 -6091.45889 4.223057e+03 11 #> 540 -6015.41815 4.061463e+03 11 #> 541 -5919.72380 3.910672e+03 11 #> 542 -5805.88502 3.773065e+03 11 #> 543 -5675.69710 3.650810e+03 11 #> 544 -5531.21320 3.545837e+03 11 #> 545 -5374.71189 3.459799e+03 11 #> 546 -5208.66131 3.394055e+03 11 #> 547 -5035.68017 3.349641e+03 11 #> 548 -4858.49649 3.327258e+03 11 #> 549 -4679.90456 3.327258e+03 11 #> 550 -4502.72087 3.349641e+03 11 #> 551 -4329.73973 3.394055e+03 11 #> 552 -4163.68915 3.459799e+03 11 #> 553 -4007.18785 3.545837e+03 11 #> 554 -3862.70394 3.650810e+03 11 #> 555 -3732.51602 3.773065e+03 11 #> 556 -3618.67724 3.910672e+03 11 #> 557 -3522.98290 4.061463e+03 11 #> 558 -3446.94215 4.223057e+03 11 #> 559 -3391.75421 4.392908e+03 11 #> 560 -3358.28942 4.568337e+03 11 #> 561 -3347.07554 4.746577e+03 11 #> 562 -1198.11772 7.593956e+03 12 #> 563 -1212.99206 7.830377e+03 12 #> 564 -1257.38053 8.063070e+03 12 #> 565 -1330.58307 8.288364e+03 12 #> 566 -1431.44525 8.502707e+03 12 #> 567 -1558.37641 8.702719e+03 12 #> 568 -1709.37477 8.885244e+03 12 #> 569 -1882.05899 9.047406e+03 12 #> 570 -2073.70574 9.186645e+03 12 #> 571 -2281.29263 9.300767e+03 12 #> 572 -2501.54591 9.387971e+03 12 #> 573 -2730.99203 9.446883e+03 12 #> 574 -2966.01251 9.476573e+03 12 #> 575 -3202.90092 9.476573e+03 12 #> 576 -3437.92140 9.446883e+03 12 #> 577 -3667.36752 9.387971e+03 12 #> 578 -3887.62080 9.300767e+03 12 #> 579 -4095.20769 9.186645e+03 12 #> 580 -4286.85444 9.047406e+03 12 #> 581 -4459.53866 8.885244e+03 12 #> 582 -4610.53702 8.702719e+03 12 #> 583 -4737.46818 8.502707e+03 12 #> 584 -4838.33036 8.288364e+03 12 #> 585 -4911.53290 8.063070e+03 12 #> 586 -4955.92136 7.830377e+03 12 #> 587 -4970.79571 7.593956e+03 12 #> 588 -4955.92136 7.357535e+03 12 #> 589 -4911.53290 7.124843e+03 12 #> 590 -4838.33036 6.899549e+03 12 #> 591 -4737.46818 6.685206e+03 12 #> 592 -4610.53702 6.485194e+03 12 #> 593 -4459.53866 6.302669e+03 12 #> 594 -4286.85444 6.140507e+03 12 #> 595 -4095.20769 6.001268e+03 12 #> 596 -3887.62080 5.887146e+03 12 #> 597 -3667.36752 5.799941e+03 12 #> 598 -3437.92140 5.741030e+03 12 #> 599 -3202.90092 5.711340e+03 12 #> 600 -2966.01251 5.711340e+03 12 #> 601 -2730.99203 5.741030e+03 12 #> 602 -2501.54591 5.799941e+03 12 #> 603 -2281.29263 5.887146e+03 12 #> 604 -2073.70574 6.001268e+03 12 #> 605 -1882.05899 6.140507e+03 12 #> 606 -1709.37477 6.302669e+03 12 #> 607 -1558.37641 6.485194e+03 12 #> 608 -1431.44525 6.685206e+03 12 #> 609 -1330.58307 6.899549e+03 12 #> 610 -1257.38053 7.124843e+03 12 #> 611 -1212.99206 7.357535e+03 12 #> 612 -1198.11772 7.593956e+03 12 #> 613 1422.46751 9.366980e+03 13 #> 614 1410.19684 9.562016e+03 13 #> 615 1373.57832 9.753977e+03 13 #> 616 1313.18947 9.939835e+03 13 #> 617 1229.98264 1.011666e+04 13 #> 618 1125.27006 1.028166e+04 13 #> 619 1000.70311 1.043223e+04 13 #> 620 858.24629 1.056601e+04 13 #> 621 700.14621 1.068088e+04 13 #> 622 528.89623 1.077502e+04 13 #> 623 347.19704 1.084696e+04 13 #> 624 157.91416 1.089556e+04 13 #> 625 -35.96732 1.092006e+04 13 #> 626 -231.38975 1.092006e+04 13 #> 627 -425.27123 1.089556e+04 13 #> 628 -614.55411 1.084696e+04 13 #> 629 -796.25330 1.077502e+04 13 #> 630 -967.50329 1.068088e+04 13 #> 631 -1125.60336 1.056601e+04 13 #> 632 -1268.06018 1.043223e+04 13 #> 633 -1392.62713 1.028166e+04 13 #> 634 -1497.33971 1.011666e+04 13 #> 635 -1580.54654 9.939835e+03 13 #> 636 -1640.93539 9.753977e+03 13 #> 637 -1677.55391 9.562016e+03 13 #> 638 -1689.82458 9.366980e+03 13 #> 639 -1677.55391 9.171943e+03 13 #> 640 -1640.93539 8.979982e+03 13 #> 641 -1580.54654 8.794124e+03 13 #> 642 -1497.33971 8.617301e+03 13 #> 643 -1392.62713 8.452300e+03 13 #> 644 -1268.06018 8.301724e+03 13 #> 645 -1125.60336 8.167949e+03 13 #> 646 -967.50329 8.053082e+03 13 #> 647 -796.25330 7.958937e+03 13 #> 648 -614.55411 7.886997e+03 13 #> 649 -425.27123 7.838397e+03 13 #> 650 -231.38975 7.813904e+03 13 #> 651 -35.96732 7.813904e+03 13 #> 652 157.91416 7.838397e+03 13 #> 653 347.19704 7.886997e+03 13 #> 654 528.89623 7.958937e+03 13 #> 655 700.14621 8.053082e+03 13 #> 656 858.24629 8.167949e+03 13 #> 657 1000.70311 8.301724e+03 13 #> 658 1125.27006 8.452300e+03 13 #> 659 1229.98264 8.617301e+03 13 #> 660 1313.18947 8.794124e+03 13 #> 661 1373.57832 8.979982e+03 13 #> 662 1410.19684 9.171943e+03 13 #> 663 1422.46751 9.366980e+03 13 #> 664 4327.79784 9.116083e+03 14 #> 665 4316.30190 9.298805e+03 14 #> 666 4281.99537 9.478647e+03 14 #> 667 4225.41929 9.652770e+03 14 #> 668 4147.46590 9.818429e+03 14 #> 669 4049.36456 9.973012e+03 14 #> 670 3932.66240 1.011408e+04 14 #> 671 3799.19988 1.023941e+04 14 #> 672 3651.08178 1.034702e+04 14 #> 673 3490.64401 1.043523e+04 14 #> 674 3320.41677 1.050262e+04 14 #> 675 3143.08465 1.054815e+04 14 #> 676 2961.44429 1.057110e+04 14 #> 677 2778.36024 1.057110e+04 14 #> 678 2596.71987 1.054815e+04 14 #> 679 2419.38776 1.050262e+04 14 #> 680 2249.16052 1.043523e+04 14 #> 681 2088.72275 1.034702e+04 14 #> 682 1940.60465 1.023941e+04 14 #> 683 1807.14213 1.011408e+04 14 #> 684 1690.43997 9.973012e+03 14 #> 685 1592.33863 9.818429e+03 14 #> 686 1514.38524 9.652770e+03 14 #> 687 1457.80916 9.478647e+03 14 #> 688 1423.50263 9.298805e+03 14 #> 689 1412.00669 9.116083e+03 14 #> 690 1423.50263 8.933360e+03 14 #> 691 1457.80916 8.753519e+03 14 #> 692 1514.38524 8.579396e+03 14 #> 693 1592.33863 8.413736e+03 14 #> 694 1690.43997 8.259153e+03 14 #> 695 1807.14213 8.118084e+03 14 #> 696 1940.60465 7.992755e+03 14 #> 697 2088.72275 7.885141e+03 14 #> 698 2249.16052 7.796939e+03 14 #> 699 2419.38776 7.729542e+03 14 #> 700 2596.71987 7.684010e+03 14 #> 701 2778.36024 7.661064e+03 14 #> 702 2961.44429 7.661064e+03 14 #> 703 3143.08465 7.684010e+03 14 #> 704 3320.41677 7.729542e+03 14 #> 705 3490.64401 7.796939e+03 14 #> 706 3651.08178 7.885141e+03 14 #> 707 3799.19988 7.992755e+03 14 #> 708 3932.66240 8.118084e+03 14 #> 709 4049.36456 8.259153e+03 14 #> 710 4147.46590 8.413736e+03 14 #> 711 4225.41929 8.579396e+03 14 #> 712 4281.99537 8.753519e+03 14 #> 713 4316.30190 8.933360e+03 14 #> 714 4327.79784 9.116083e+03 14 #> 715 5330.20420 7.302394e+03 15 #> 716 5322.94207 7.417823e+03 15 #> 717 5301.27021 7.531431e+03 15 #> 718 5265.53039 7.641426e+03 15 #> 719 5216.28626 7.746075e+03 15 #> 720 5154.31442 7.843727e+03 15 #> 721 5080.59221 7.932842e+03 15 #> 722 4996.28227 8.012015e+03 15 #> 723 4902.71421 8.079996e+03 15 #> 724 4801.36367 8.135714e+03 15 #> 725 4693.82900 8.178290e+03 15 #> 726 4581.80608 8.207052e+03 15 #> 727 4467.06159 8.221548e+03 15 #> 728 4351.40512 8.221548e+03 15 #> 729 4236.66063 8.207052e+03 15 #> 730 4124.63771 8.178290e+03 15 #> 731 4017.10304 8.135714e+03 15 #> 732 3915.75250 8.079996e+03 15 #> 733 3822.18444 8.012015e+03 15 #> 734 3737.87450 7.932842e+03 15 #> 735 3664.15229 7.843727e+03 15 #> 736 3602.18045 7.746075e+03 15 #> 737 3552.93632 7.641426e+03 15 #> 738 3517.19650 7.531431e+03 15 #> 739 3495.52464 7.417823e+03 15 #> 740 3488.26251 7.302394e+03 15 #> 741 3495.52464 7.186966e+03 15 #> 742 3517.19650 7.073358e+03 15 #> 743 3552.93632 6.963362e+03 15 #> 744 3602.18045 6.858713e+03 15 #> 745 3664.15229 6.761061e+03 15 #> 746 3737.87450 6.671946e+03 15 #> 747 3822.18444 6.592774e+03 15 #> 748 3915.75250 6.524793e+03 15 #> 749 4017.10304 6.469075e+03 15 #> 750 4124.63771 6.426499e+03 15 #> 751 4236.66063 6.397736e+03 15 #> 752 4351.40512 6.383241e+03 15 #> 753 4467.06159 6.383241e+03 15 #> 754 4581.80608 6.397736e+03 15 #> 755 4693.82900 6.426499e+03 15 #> 756 4801.36367 6.469075e+03 15 #> 757 4902.71421 6.524793e+03 15 #> 758 4996.28227 6.592774e+03 15 #> 759 5080.59221 6.671946e+03 15 #> 760 5154.31442 6.761061e+03 15 #> 761 5216.28626 6.858713e+03 15 #> 762 5265.53039 6.963362e+03 15 #> 763 5301.27021 7.073358e+03 15 #> 764 5322.94207 7.186966e+03 15 #> 765 5330.20420 7.302394e+03 15 #> 766 16698.14682 8.154050e+03 16 #> 767 16653.11053 8.869881e+03 16 #> 768 16518.71190 9.574423e+03 16 #> 769 16297.07049 1.025657e+04 16 #> 770 15991.68171 1.090555e+04 16 #> 771 15607.36173 1.151114e+04 16 #> 772 15150.17150 1.206379e+04 16 #> 773 14627.32118 1.255478e+04 16 #> 774 14047.05644 1.297637e+04 16 #> 775 13418.52839 1.332190e+04 16 #> 776 12751.64930 1.358594e+04 16 #> 777 12056.93626 1.376431e+04 16 #> 778 11345.34529 1.385420e+04 16 #> 779 10628.09863 1.385420e+04 16 #> 780 9916.50766 1.376431e+04 16 #> 781 9221.79462 1.358594e+04 16 #> 782 8554.91553 1.332190e+04 16 #> 783 7926.38748 1.297637e+04 16 #> 784 7346.12274 1.255478e+04 16 #> 785 6823.27242 1.206379e+04 16 #> 786 6366.08219 1.151114e+04 16 #> 787 5981.76220 1.090555e+04 16 #> 788 5676.37343 1.025657e+04 16 #> 789 5454.73202 9.574423e+03 16 #> 790 5320.33339 8.869881e+03 16 #> 791 5275.29710 8.154050e+03 16 #> 792 5320.33339 7.438218e+03 16 #> 793 5454.73202 6.733676e+03 16 #> 794 5676.37343 6.051534e+03 16 #> 795 5981.76220 5.402550e+03 16 #> 796 6366.08219 4.796958e+03 16 #> 797 6823.27242 4.244310e+03 16 #> 798 7346.12274 3.753321e+03 16 #> 799 7926.38748 3.331734e+03 16 #> 800 8554.91553 2.986198e+03 16 #> 801 9221.79462 2.722162e+03 16 #> 802 9916.50766 2.543790e+03 16 #> 803 10628.09863 2.453895e+03 16 #> 804 11345.34529 2.453895e+03 16 #> 805 12056.93626 2.543790e+03 16 #> 806 12751.64930 2.722162e+03 16 #> 807 13418.52839 2.986198e+03 16 #> 808 14047.05644 3.331734e+03 16 #> 809 14627.32118 3.753321e+03 16 #> 810 15150.17150 4.244310e+03 16 #> 811 15607.36173 4.796958e+03 16 #> 812 15991.68171 5.402550e+03 16 #> 813 16297.07049 6.051534e+03 16 #> 814 16518.71190 6.733676e+03 16 #> 815 16653.11053 7.438218e+03 16 #> 816 16698.14682 8.154050e+03 16 #> 817 -4448.32055 -6.555570e+03 17 #> 818 -4458.41340 -6.395149e+03 17 #> 819 -4488.53278 -6.237257e+03 17 #> 820 -4538.20370 -6.084386e+03 17 #> 821 -4606.64281 -5.938946e+03 17 #> 822 -4692.77078 -5.803230e+03 17 #> 823 -4795.22933 -5.679379e+03 17 #> 824 -4912.40263 -5.569345e+03 17 #> 825 -5042.44278 -5.474866e+03 17 #> 826 -5183.29896 -5.397429e+03 17 #> 827 -5332.74981 -5.338258e+03 17 #> 828 -5488.43837 -5.298284e+03 17 #> 829 -5647.90936 -5.278138e+03 17 #> 830 -5808.64783 -5.278138e+03 17 #> 831 -5968.11882 -5.298284e+03 17 #> 832 -6123.80738 -5.338258e+03 17 #> 833 -6273.25823 -5.397429e+03 17 #> 834 -6414.11441 -5.474866e+03 17 #> 835 -6544.15456 -5.569345e+03 17 #> 836 -6661.32786 -5.679379e+03 17 #> 837 -6763.78641 -5.803230e+03 17 #> 838 -6849.91438 -5.938946e+03 17 #> 839 -6918.35349 -6.084386e+03 17 #> 840 -6968.02441 -6.237257e+03 17 #> 841 -6998.14379 -6.395149e+03 17 #> 842 -7008.23664 -6.555570e+03 17 #> 843 -6998.14379 -6.715991e+03 17 #> 844 -6968.02441 -6.873883e+03 17 #> 845 -6918.35349 -7.026754e+03 17 #> 846 -6849.91438 -7.172195e+03 17 #> 847 -6763.78641 -7.307911e+03 17 #> 848 -6661.32786 -7.431762e+03 17 #> 849 -6544.15456 -7.541795e+03 17 #> 850 -6414.11441 -7.636274e+03 17 #> 851 -6273.25823 -7.713711e+03 17 #> 852 -6123.80738 -7.772883e+03 17 #> 853 -5968.11882 -7.812857e+03 17 #> 854 -5808.64783 -7.833002e+03 17 #> 855 -5647.90936 -7.833002e+03 17 #> 856 -5488.43837 -7.812857e+03 17 #> 857 -5332.74981 -7.772883e+03 17 #> 858 -5183.29896 -7.713711e+03 17 #> 859 -5042.44278 -7.636274e+03 17 #> 860 -4912.40263 -7.541795e+03 17 #> 861 -4795.22933 -7.431762e+03 17 #> 862 -4692.77078 -7.307911e+03 17 #> 863 -4606.64281 -7.172195e+03 17 #> 864 -4538.20370 -7.026754e+03 17 #> 865 -4488.53278 -6.873883e+03 17 #> 866 -4458.41340 -6.715991e+03 17 #> 867 -4448.32055 -6.555570e+03 17 #> 868 -7006.35981 -6.463573e+03 18 #> 869 -7014.05363 -6.341283e+03 18 #> 870 -7037.01377 -6.220922e+03 18 #> 871 -7074.87814 -6.104387e+03 18 #> 872 -7127.04957 -5.993517e+03 18 #> 873 -7192.70531 -5.890060e+03 18 #> 874 -7270.80992 -5.795648e+03 18 #> 875 -7360.13165 -5.711769e+03 18 #> 876 -7459.26183 -5.639747e+03 18 #> 877 -7566.63713 -5.580717e+03 18 #> 878 -7680.56417 -5.535610e+03 18 #> 879 -7799.24626 -5.505138e+03 18 #> 880 -7920.81171 -5.489780e+03 18 #> 881 -8043.34336 -5.489780e+03 18 #> 882 -8164.90880 -5.505138e+03 18 #> 883 -8283.59089 -5.535610e+03 18 #> 884 -8397.51794 -5.580717e+03 18 #> 885 -8504.89324 -5.639747e+03 18 #> 886 -8604.02342 -5.711769e+03 18 #> 887 -8693.34515 -5.795648e+03 18 #> 888 -8771.44976 -5.890060e+03 18 #> 889 -8837.10549 -5.993517e+03 18 #> 890 -8889.27693 -6.104387e+03 18 #> 891 -8927.14129 -6.220922e+03 18 #> 892 -8950.10143 -6.341283e+03 18 #> 893 -8957.79526 -6.463573e+03 18 #> 894 -8950.10143 -6.585862e+03 18 #> 895 -8927.14129 -6.706224e+03 18 #> 896 -8889.27693 -6.822758e+03 18 #> 897 -8837.10549 -6.933628e+03 18 #> 898 -8771.44976 -7.037085e+03 18 #> 899 -8693.34515 -7.131497e+03 18 #> 900 -8604.02342 -7.215376e+03 18 #> 901 -8504.89324 -7.287398e+03 18 #> 902 -8397.51794 -7.346428e+03 18 #> 903 -8283.59089 -7.391535e+03 18 #> 904 -8164.90880 -7.422008e+03 18 #> 905 -8043.34336 -7.437365e+03 18 #> 906 -7920.81171 -7.437365e+03 18 #> 907 -7799.24626 -7.422008e+03 18 #> 908 -7680.56417 -7.391535e+03 18 #> 909 -7566.63713 -7.346428e+03 18 #> 910 -7459.26183 -7.287398e+03 18 #> 911 -7360.13165 -7.215376e+03 18 #> 912 -7270.80992 -7.131497e+03 18 #> 913 -7192.70531 -7.037085e+03 18 #> 914 -7127.04957 -6.933628e+03 18 #> 915 -7074.87814 -6.822758e+03 18 #> 916 -7037.01377 -6.706224e+03 18 #> 917 -7014.05363 -6.585862e+03 18 #> 918 -7006.35981 -6.463573e+03 18 #> 919 -5524.96104 6.556342e+03 19 #> 920 -5535.75293 6.727874e+03 19 #> 921 -5567.95842 6.896701e+03 19 #> 922 -5621.06960 7.060161e+03 19 #> 923 -5694.24888 7.215675e+03 19 #> 924 -5786.34218 7.360790e+03 19 #> 925 -5895.89712 7.493220e+03 19 #> 926 -6021.18597 7.610874e+03 19 #> 927 -6160.23285 7.711897e+03 19 #> 928 -6310.84489 7.794697e+03 19 #> 929 -6470.64687 7.857967e+03 19 #> 930 -6637.11860 7.900709e+03 19 #> 931 -6807.63474 7.922251e+03 19 #> 932 -6979.50612 7.922251e+03 19 #> 933 -7150.02226 7.900709e+03 19 #> 934 -7316.49399 7.857967e+03 19 #> 935 -7476.29597 7.794697e+03 19 #> 936 -7626.90801 7.711897e+03 19 #> 937 -7765.95489 7.610874e+03 19 #> 938 -7891.24374 7.493220e+03 19 #> 939 -8000.79868 7.360790e+03 19 #> 940 -8092.89198 7.215675e+03 19 #> 941 -8166.07126 7.060161e+03 19 #> 942 -8219.18244 6.896701e+03 19 #> 943 -8251.38793 6.727874e+03 19 #> 944 -8262.17982 6.556342e+03 19 #> 945 -8251.38793 6.384810e+03 19 #> 946 -8219.18244 6.215983e+03 19 #> 947 -8166.07126 6.052523e+03 19 #> 948 -8092.89198 5.897009e+03 19 #> 949 -8000.79868 5.751894e+03 19 #> 950 -7891.24374 5.619464e+03 19 #> 951 -7765.95489 5.501810e+03 19 #> 952 -7626.90801 5.400787e+03 19 #> 953 -7476.29597 5.317987e+03 19 #> 954 -7316.49399 5.254717e+03 19 #> 955 -7150.02226 5.211974e+03 19 #> 956 -6979.50612 5.190433e+03 19 #> 957 -6807.63474 5.190433e+03 19 #> 958 -6637.11860 5.211974e+03 19 #> 959 -6470.64687 5.254717e+03 19 #> 960 -6310.84489 5.317987e+03 19 #> 961 -6160.23285 5.400787e+03 19 #> 962 -6021.18597 5.501810e+03 19 #> 963 -5895.89712 5.619464e+03 19 #> 964 -5786.34218 5.751894e+03 19 #> 965 -5694.24888 5.897009e+03 19 #> 966 -5621.06960 6.052523e+03 19 #> 967 -5567.95842 6.215983e+03 19 #> 968 -5535.75293 6.384810e+03 19 #> 969 -5524.96104 6.556342e+03 19 #> 970 -3712.37092 1.083600e+04 20 #> 971 -3735.38867 1.120186e+04 20 #> 972 -3804.07891 1.156195e+04 20 #> 973 -3917.35835 1.191058e+04 20 #> 974 -4073.44051 1.224228e+04 20 #> 975 -4269.86389 1.255179e+04 20 #> 976 -4503.53077 1.283424e+04 20 #> 977 -4770.75607 1.308519e+04 20 #> 978 -5067.32551 1.330066e+04 20 #> 979 -5388.56200 1.347726e+04 20 #> 980 -5729.39945 1.361220e+04 20 #> 981 -6084.46264 1.370337e+04 20 #> 982 -6448.15203 1.374931e+04 20 #> 983 -6814.73202 1.374931e+04 20 #> 984 -7178.42141 1.370337e+04 20 #> 985 -7533.48460 1.361220e+04 20 #> 986 -7874.32205 1.347726e+04 20 #> 987 -8195.55854 1.330066e+04 20 #> 988 -8492.12798 1.308519e+04 20 #> 989 -8759.35328 1.283424e+04 20 #> 990 -8993.02016 1.255179e+04 20 #> 991 -9189.44354 1.224228e+04 20 #> 992 -9345.52570 1.191058e+04 20 #> 993 -9458.80515 1.156195e+04 20 #> 994 -9527.49538 1.120186e+04 20 #> 995 -9550.51313 1.083600e+04 20 #> 996 -9527.49538 1.047015e+04 20 #> 997 -9458.80515 1.011006e+04 20 #> 998 -9345.52570 9.761421e+03 20 #> 999 -9189.44354 9.429729e+03 20 #> 1000 -8993.02016 9.120215e+03 20 #> 1001 -8759.35328 8.837761e+03 20 #> 1002 -8492.12798 8.586819e+03 20 #> 1003 -8195.55854 8.371349e+03 20 #> 1004 -7874.32205 8.194748e+03 20 #> 1005 -7533.48460 8.059801e+03 20 #> 1006 -7178.42141 7.968636e+03 20 #> 1007 -6814.73202 7.922691e+03 20 #> 1008 -6448.15203 7.922691e+03 20 #> 1009 -6084.46264 7.968636e+03 20 #> 1010 -5729.39945 8.059801e+03 20 #> 1011 -5388.56200 8.194748e+03 20 #> 1012 -5067.32551 8.371349e+03 20 #> 1013 -4770.75607 8.586819e+03 20 #> 1014 -4503.53077 8.837761e+03 20 #> 1015 -4269.86389 9.120215e+03 20 #> 1016 -4073.44051 9.429729e+03 20 #> 1017 -3917.35835 9.761421e+03 20 #> 1018 -3804.07891 1.011006e+04 20 #> 1019 -3735.38867 1.047015e+04 20 #> 1020 -3712.37092 1.083600e+04 20 #> 1021 -1505.63083 1.055152e+04 21 #> 1022 -1514.37090 1.069044e+04 21 #> 1023 -1540.45326 1.082716e+04 21 #> 1024 -1583.46658 1.095955e+04 21 #> 1025 -1642.73252 1.108549e+04 21 #> 1026 -1717.31641 1.120302e+04 21 #> 1027 -1806.04203 1.131027e+04 21 #> 1028 -1907.51011 1.140555e+04 21 #> 1029 -2020.12045 1.148737e+04 21 #> 1030 -2142.09711 1.155443e+04 21 #> 1031 -2271.51645 1.160567e+04 21 #> 1032 -2406.33745 1.164028e+04 21 #> 1033 -2544.43390 1.165773e+04 21 #> 1034 -2683.62793 1.165773e+04 21 #> 1035 -2821.72438 1.164028e+04 21 #> 1036 -2956.54538 1.160567e+04 21 #> 1037 -3085.96472 1.155443e+04 21 #> 1038 -3207.94138 1.148737e+04 21 #> 1039 -3320.55172 1.140555e+04 21 #> 1040 -3422.01980 1.131027e+04 21 #> 1041 -3510.74542 1.120302e+04 21 #> 1042 -3585.32931 1.108549e+04 21 #> 1043 -3644.59525 1.095955e+04 21 #> 1044 -3687.60857 1.082716e+04 21 #> 1045 -3713.69093 1.069044e+04 21 #> 1046 -3722.43100 1.055152e+04 21 #> 1047 -3713.69093 1.041260e+04 21 #> 1048 -3687.60857 1.027587e+04 21 #> 1049 -3644.59525 1.014349e+04 21 #> 1050 -3585.32931 1.001754e+04 21 #> 1051 -3510.74542 9.900015e+03 21 #> 1052 -3422.01980 9.792764e+03 21 #> 1053 -3320.55172 9.697480e+03 21 #> 1054 -3207.94138 9.615663e+03 21 #> 1055 -3085.96472 9.548606e+03 21 #> 1056 -2956.54538 9.497365e+03 21 #> 1057 -2821.72438 9.462749e+03 21 #> 1058 -2683.62793 9.445304e+03 21 #> 1059 -2544.43390 9.445304e+03 21 #> 1060 -2406.33745 9.462749e+03 21 #> 1061 -2271.51645 9.497365e+03 21 #> 1062 -2142.09711 9.548606e+03 21 #> 1063 -2020.12045 9.615663e+03 21 #> 1064 -1907.51011 9.697480e+03 21 #> 1065 -1806.04203 9.792764e+03 21 #> 1066 -1717.31641 9.900015e+03 21 #> 1067 -1642.73252 1.001754e+04 21 #> 1068 -1583.46658 1.014349e+04 21 #> 1069 -1540.45326 1.027587e+04 21 #> 1070 -1514.37090 1.041260e+04 21 #> 1071 -1505.63083 1.055152e+04 21 #> 1072 -491.71902 1.129376e+04 22 #> 1073 -496.38885 1.136798e+04 22 #> 1074 -510.32469 1.144104e+04 22 #> 1075 -533.30676 1.151177e+04 22 #> 1076 -564.97263 1.157906e+04 22 #> 1077 -604.82290 1.164186e+04 22 #> 1078 -652.22910 1.169916e+04 22 #> 1079 -706.44363 1.175007e+04 22 #> 1080 -766.61148 1.179379e+04 22 #> 1081 -831.78376 1.182962e+04 22 #> 1082 -900.93268 1.185699e+04 22 #> 1083 -972.96771 1.187549e+04 22 #> 1084 -1046.75282 1.188481e+04 22 #> 1085 -1121.12437 1.188481e+04 22 #> 1086 -1194.90947 1.187549e+04 22 #> 1087 -1266.94450 1.185699e+04 22 #> 1088 -1336.09342 1.182962e+04 22 #> 1089 -1401.26571 1.179379e+04 22 #> 1090 -1461.43355 1.175007e+04 22 #> 1091 -1515.64808 1.169916e+04 22 #> 1092 -1563.05429 1.164186e+04 22 #> 1093 -1602.90456 1.157906e+04 22 #> 1094 -1634.57042 1.151177e+04 22 #> 1095 -1657.55249 1.144104e+04 22 #> 1096 -1671.48833 1.136798e+04 22 #> 1097 -1676.15816 1.129376e+04 22 #> 1098 -1671.48833 1.121953e+04 22 #> 1099 -1657.55249 1.114648e+04 22 #> 1100 -1634.57042 1.107575e+04 22 #> 1101 -1602.90456 1.100846e+04 22 #> 1102 -1563.05429 1.094566e+04 22 #> 1103 -1515.64808 1.088836e+04 22 #> 1104 -1461.43355 1.083745e+04 22 #> 1105 -1401.26571 1.079373e+04 22 #> 1106 -1336.09342 1.075790e+04 22 #> 1107 -1266.94450 1.073053e+04 22 #> 1108 -1194.90947 1.071203e+04 22 #> 1109 -1121.12437 1.070271e+04 22 #> 1110 -1046.75282 1.070271e+04 22 #> 1111 -972.96771 1.071203e+04 22 #> 1112 -900.93268 1.073053e+04 22 #> 1113 -831.78376 1.075790e+04 22 #> 1114 -766.61148 1.079373e+04 22 #> 1115 -706.44363 1.083745e+04 22 #> 1116 -652.22910 1.088836e+04 22 #> 1117 -604.82290 1.094566e+04 22 #> 1118 -564.97263 1.100846e+04 22 #> 1119 -533.30676 1.107575e+04 22 #> 1120 -510.32469 1.114648e+04 22 #> 1121 -496.38885 1.121953e+04 22 #> 1122 -491.71902 1.129376e+04 22 #> 1123 -8956.93169 -6.598524e+03 23 #> 1124 -9032.38785 -5.399182e+03 23 #> 1125 -9257.56632 -4.218755e+03 23 #> 1126 -9628.91592 -3.075859e+03 23 #> 1127 -10140.58024 -1.988517e+03 23 #> 1128 -10784.49002 -9.738774e+02 23 #> 1129 -11550.49042 -4.794200e+01 23 #> 1130 -12426.50116 7.746868e+02 23 #> 1131 -13398.70703 1.481036e+03 23 #> 1132 -14451.77576 2.059965e+03 23 #> 1133 -15569.09982 2.502345e+03 23 #> 1134 -16733.05835 2.801199e+03 23 #> 1135 -17925.29503 2.951813e+03 23 #> 1136 -19127.00757 2.951813e+03 23 #> 1137 -20319.24425 2.801199e+03 23 #> 1138 -21483.20279 2.502345e+03 23 #> 1139 -22600.52685 2.059965e+03 23 #> 1140 -23653.59558 1.481036e+03 23 #> 1141 -24625.80145 7.746868e+02 23 #> 1142 -25501.81219 -4.794200e+01 23 #> 1143 -26267.81259 -9.738774e+02 23 #> 1144 -26911.72237 -1.988517e+03 23 #> 1145 -27423.38668 -3.075859e+03 23 #> 1146 -27794.73628 -4.218755e+03 23 #> 1147 -28019.91476 -5.399182e+03 23 #> 1148 -28095.37091 -6.598524e+03 23 #> 1149 -28019.91476 -7.797865e+03 23 #> 1150 -27794.73628 -8.978292e+03 23 #> 1151 -27423.38668 -1.012119e+04 23 #> 1152 -26911.72237 -1.120853e+04 23 #> 1153 -26267.81259 -1.222317e+04 23 #> 1154 -25501.81219 -1.314911e+04 23 #> 1155 -24625.80145 -1.397173e+04 23 #> 1156 -23653.59558 -1.467808e+04 23 #> 1157 -22600.52685 -1.525701e+04 23 #> 1158 -21483.20279 -1.569939e+04 23 #> 1159 -20319.24425 -1.599825e+04 23 #> 1160 -19127.00757 -1.614886e+04 23 #> 1161 -17925.29503 -1.614886e+04 23 #> 1162 -16733.05835 -1.599825e+04 23 #> 1163 -15569.09982 -1.569939e+04 23 #> 1164 -14451.77576 -1.525701e+04 23 #> 1165 -13398.70703 -1.467808e+04 23 #> 1166 -12426.50116 -1.397173e+04 23 #> 1167 -11550.49042 -1.314911e+04 23 #> 1168 -10784.49002 -1.222317e+04 23 #> 1169 -10140.58024 -1.120853e+04 23 #> 1170 -9628.91592 -1.012119e+04 23 #> 1171 -9257.56632 -8.978292e+03 23 #> 1172 -9032.38785 -7.797865e+03 23 #> 1173 -8956.93169 -6.598524e+03 23 #> 1174 -10007.31062 9.133993e+02 24 #> 1175 -10015.46915 1.043075e+03 24 #> 1176 -10039.81609 1.170707e+03 24 #> 1177 -10079.96746 1.294280e+03 24 #> 1178 -10135.29006 1.411846e+03 24 #> 1179 -10204.91142 1.521552e+03 24 #> 1180 -10287.73356 1.621667e+03 24 #> 1181 -10382.45034 1.710612e+03 24 #> 1182 -10487.56800 1.786984e+03 24 #> 1183 -10601.42879 1.849580e+03 24 #> 1184 -10722.23704 1.897411e+03 24 #> 1185 -10848.08755 1.929724e+03 24 #> 1186 -10976.99557 1.946009e+03 24 #> 1187 -11106.92815 1.946009e+03 24 #> 1188 -11235.83617 1.929724e+03 24 #> 1189 -11361.68668 1.897411e+03 24 #> 1190 -11482.49494 1.849580e+03 24 #> 1191 -11596.35572 1.786984e+03 24 #> 1192 -11701.47339 1.710612e+03 24 #> 1193 -11796.19016 1.621667e+03 24 #> 1194 -11879.01231 1.521552e+03 24 #> 1195 -11948.63366 1.411846e+03 24 #> 1196 -12003.95626 1.294280e+03 24 #> 1197 -12044.10764 1.170707e+03 24 #> 1198 -12068.45458 1.043075e+03 24 #> 1199 -12076.61311 9.133993e+02 24 #> 1200 -12068.45458 7.837231e+02 24 #> 1201 -12044.10764 6.560920e+02 24 #> 1202 -12003.95626 5.325188e+02 24 #> 1203 -11948.63366 4.149523e+02 24 #> 1204 -11879.01231 3.052466e+02 24 #> 1205 -11796.19016 2.051318e+02 24 #> 1206 -11701.47339 1.161868e+02 24 #> 1207 -11596.35572 3.981436e+01 24 #> 1208 -11482.49494 -2.278113e+01 24 #> 1209 -11361.68668 -7.061250e+01 24 #> 1210 -11235.83617 -1.029254e+02 24 #> 1211 -11106.92815 -1.192103e+02 24 #> 1212 -10976.99557 -1.192103e+02 24 #> 1213 -10848.08755 -1.029254e+02 24 #> 1214 -10722.23704 -7.061250e+01 24 #> 1215 -10601.42879 -2.278113e+01 24 #> 1216 -10487.56800 3.981436e+01 24 #> 1217 -10382.45034 1.161868e+02 24 #> 1218 -10287.73356 2.051318e+02 24 #> 1219 -10204.91142 3.052466e+02 24 #> 1220 -10135.29006 4.149523e+02 24 #> 1221 -10079.96746 5.325188e+02 24 #> 1222 -10039.81609 6.560920e+02 24 #> 1223 -10015.46915 7.837231e+02 24 #> 1224 -10007.31062 9.133993e+02 24 #> 1225 6909.86962 1.316298e+04 25 #> 1226 6887.94479 1.351147e+04 25 #> 1227 6822.51609 1.385446e+04 25 #> 1228 6714.61534 1.418654e+04 25 #> 1229 6565.94423 1.450248e+04 25 #> 1230 6378.84737 1.479730e+04 25 #> 1231 6156.27541 1.506634e+04 25 #> 1232 5901.73842 1.530537e+04 25 #> 1233 5619.25061 1.551061e+04 25 #> 1234 5313.26699 1.567883e+04 25 #> 1235 4988.61309 1.580736e+04 25 #> 1236 4650.40890 1.589420e+04 25 #> 1237 4303.98811 1.593796e+04 25 #> 1238 3954.81398 1.593796e+04 25 #> 1239 3608.39319 1.589420e+04 25 #> 1240 3270.18901 1.580736e+04 25 #> 1241 2945.53511 1.567883e+04 25 #> 1242 2639.55148 1.551061e+04 25 #> 1243 2357.06368 1.530537e+04 25 #> 1244 2102.52669 1.506634e+04 25 #> 1245 1879.95472 1.479730e+04 25 #> 1246 1692.85787 1.450248e+04 25 #> 1247 1544.18675 1.418654e+04 25 #> 1248 1436.28601 1.385446e+04 25 #> 1249 1370.85730 1.351147e+04 25 #> 1250 1348.93248 1.316298e+04 25 #> 1251 1370.85730 1.281450e+04 25 #> 1252 1436.28601 1.247151e+04 25 #> 1253 1544.18675 1.213942e+04 25 #> 1254 1692.85787 1.182348e+04 25 #> 1255 1879.95472 1.152866e+04 25 #> 1256 2102.52669 1.125962e+04 25 #> 1257 2357.06368 1.102059e+04 25 #> 1258 2639.55148 1.081535e+04 25 #> 1259 2945.53511 1.064714e+04 25 #> 1260 3270.18901 1.051860e+04 25 #> 1261 3608.39319 1.043176e+04 25 #> 1262 3954.81398 1.038800e+04 25 #> 1263 4303.98811 1.038800e+04 25 #> 1264 4650.40890 1.043176e+04 25 #> 1265 4988.61309 1.051860e+04 25 #> 1266 5313.26699 1.064714e+04 25 #> 1267 5619.25061 1.081535e+04 25 #> 1268 5901.73842 1.102059e+04 25 #> 1269 6156.27541 1.125962e+04 25 #> 1270 6378.84737 1.152866e+04 25 #> 1271 6565.94423 1.182348e+04 25 #> 1272 6714.61534 1.213942e+04 25 #> 1273 6822.51609 1.247151e+04 25 #> 1274 6887.94479 1.281450e+04 25 #> 1275 6909.86962 1.316298e+04 25 ``` ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> *circle_outlines ``` ] .panel2-background-auto[ ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines *circle_outlines ``` ] .panel2-background-auto[ ``` #> x y id #> 1 0.00000 0.000000e+00 1 #> 2 -27.54349 4.377912e+02 1 #> 3 -109.73958 8.686783e+02 1 #> 4 -245.29200 1.285866e+03 1 #> 5 -432.06299 1.682774e+03 1 #> 6 -667.10708 2.053144e+03 1 #> 7 -946.71746 2.391135e+03 1 #> 8 -1266.48453 2.691417e+03 1 #> 9 -1621.36536 2.949253e+03 1 #> 10 -2005.76327 3.160577e+03 1 #> 11 -2413.61608 3.322058e+03 1 #> 12 -2838.49170 3.431147e+03 1 #> 13 -3273.68959 3.486125e+03 1 #> 14 -3712.34642 3.486125e+03 1 #> 15 -4147.54431 3.431147e+03 1 #> 16 -4572.41993 3.322058e+03 1 #> 17 -4980.27273 3.160577e+03 1 #> 18 -5364.67064 2.949253e+03 1 #> 19 -5719.55147 2.691417e+03 1 #> 20 -6039.31854 2.391135e+03 1 #> 21 -6318.92893 2.053144e+03 1 #> 22 -6553.97301 1.682774e+03 1 #> 23 -6740.74401 1.285866e+03 1 #> 24 -6876.29642 8.686783e+02 1 #> 25 -6958.49251 4.377912e+02 1 #> 26 -6986.03600 -1.123440e-12 1 #> 27 -6958.49251 -4.377912e+02 1 #> 28 -6876.29642 -8.686783e+02 1 #> 29 -6740.74401 -1.285866e+03 1 #> 30 -6553.97301 -1.682774e+03 1 #> 31 -6318.92893 -2.053144e+03 1 #> 32 -6039.31854 -2.391135e+03 1 #> 33 -5719.55147 -2.691417e+03 1 #> 34 -5364.67064 -2.949253e+03 1 #> 35 -4980.27273 -3.160577e+03 1 #> 36 -4572.41993 -3.322058e+03 1 #> 37 -4147.54431 -3.431147e+03 1 #> 38 -3712.34642 -3.486125e+03 1 #> 39 -3273.68959 -3.486125e+03 1 #> 40 -2838.49170 -3.431147e+03 1 #> 41 -2413.61608 -3.322058e+03 1 #> 42 -2005.76327 -3.160577e+03 1 #> 43 -1621.36536 -2.949253e+03 1 #> 44 -1266.48453 -2.691417e+03 1 #> 45 -946.71746 -2.391135e+03 1 #> 46 -667.10708 -2.053144e+03 1 #> 47 -432.06299 -1.682774e+03 1 #> 48 -245.29200 -1.285866e+03 1 #> 49 -109.73958 -8.686783e+02 1 #> 50 -27.54349 -4.377912e+02 1 #> 51 0.00000 -8.555427e-13 1 #> 52 3279.12771 0.000000e+00 2 #> 53 3266.19926 2.054918e+02 2 #> 54 3227.61780 4.077430e+02 2 #> 55 3163.99178 6.035637e+02 2 #> 56 3076.32462 7.898659e+02 2 #> 57 2965.99888 9.637115e+02 2 #> 58 2834.75447 1.122359e+03 2 #> 59 2684.66119 1.263306e+03 2 #> 60 2518.08610 1.384330e+03 2 #> 61 2337.65620 1.483522e+03 2 #> 62 2146.21695 1.559318e+03 2 #> 63 1946.78749 1.610523e+03 2 #> 64 1742.51292 1.636329e+03 2 #> 65 1536.61479 1.636329e+03 2 #> 66 1332.34023 1.610523e+03 2 #> 67 1132.91076 1.559318e+03 2 #> 68 941.47152 1.483522e+03 2 #> 69 761.04161 1.384330e+03 2 #> 70 594.46652 1.263306e+03 2 #> 71 444.37324 1.122359e+03 2 #> 72 313.12883 9.637115e+02 2 #> 73 202.80310 7.898659e+02 2 #> 74 115.13594 6.035637e+02 2 #> 75 51.50991 4.077430e+02 2 #> 76 12.92845 2.054918e+02 2 #> 77 0.00000 -5.273240e-13 2 #> 78 12.92845 -2.054918e+02 2 #> 79 51.50991 -4.077430e+02 2 #> 80 115.13594 -6.035637e+02 2 #> 81 202.80310 -7.898659e+02 2 #> 82 313.12883 -9.637115e+02 2 #> 83 444.37324 -1.122359e+03 2 #> 84 594.46652 -1.263306e+03 2 #> 85 761.04161 -1.384330e+03 2 #> 86 941.47152 -1.483522e+03 2 #> 87 1132.91076 -1.559318e+03 2 #> 88 1332.34023 -1.610523e+03 2 #> 89 1536.61479 -1.636329e+03 2 #> 90 1742.51292 -1.636329e+03 2 #> 91 1946.78749 -1.610523e+03 2 #> 92 2146.21695 -1.559318e+03 2 #> 93 2337.65620 -1.483522e+03 2 #> 94 2518.08610 -1.384330e+03 2 #> 95 2684.66119 -1.263306e+03 2 #> 96 2834.75447 -1.122359e+03 2 #> 97 2965.99888 -9.637115e+02 2 #> 98 3076.32462 -7.898659e+02 2 #> 99 3163.99178 -6.035637e+02 2 #> 100 3227.61780 -4.077430e+02 2 #> 101 3266.19926 -2.054918e+02 2 #> 102 3279.12771 -4.015773e-13 2 #> 103 10300.36784 -9.142026e+03 3 #> 104 10240.69510 -8.193555e+03 3 #> 105 10062.61797 -7.260042e+03 3 #> 106 9768.94482 -6.356209e+03 3 #> 107 9364.30706 -5.496310e+03 3 #> 108 8855.08607 -4.693906e+03 3 #> 109 8249.31257 -3.961652e+03 3 #> 110 7556.53995 -3.311095e+03 3 #> 111 6787.69368 -2.752495e+03 3 #> 112 5954.89890 -2.294663e+03 3 #> 113 5071.28929 -1.944817e+03 3 #> 114 4150.79990 -1.708475e+03 3 #> 115 3207.94740 -1.589365e+03 3 #> 116 2257.60114 -1.589365e+03 3 #> 117 1314.74864 -1.708475e+03 3 #> 118 394.25925 -1.944817e+03 3 #> 119 -489.35035 -2.294663e+03 3 #> 120 -1322.14513 -2.752495e+03 3 #> 121 -2090.99141 -3.311095e+03 3 #> 122 -2783.76402 -3.961652e+03 3 #> 123 -3389.53753 -4.693906e+03 3 #> 124 -3898.75852 -5.496310e+03 3 #> 125 -4303.39628 -6.356209e+03 3 #> 126 -4597.06942 -7.260042e+03 3 #> 127 -4775.14656 -8.193555e+03 3 #> 128 -4834.81929 -9.142026e+03 3 #> 129 -4775.14656 -1.009050e+04 3 #> 130 -4597.06942 -1.102401e+04 3 #> 131 -4303.39628 -1.192784e+04 3 #> 132 -3898.75852 -1.278774e+04 3 #> 133 -3389.53753 -1.359015e+04 3 #> 134 -2783.76402 -1.432240e+04 3 #> 135 -2090.99141 -1.497296e+04 3 #> 136 -1322.14513 -1.553156e+04 3 #> 137 -489.35035 -1.598939e+04 3 #> 138 394.25925 -1.633924e+04 3 #> 139 1314.74864 -1.657558e+04 3 #> 140 2257.60114 -1.669469e+04 3 #> 141 3207.94740 -1.669469e+04 3 #> 142 4150.79990 -1.657558e+04 3 #> 143 5071.28929 -1.633924e+04 3 #> 144 5954.89890 -1.598939e+04 3 #> 145 6787.69368 -1.553156e+04 3 #> 146 7556.53995 -1.497296e+04 3 #> 147 8249.31257 -1.432240e+04 3 #> 148 8855.08607 -1.359015e+04 3 #> 149 9364.30706 -1.278774e+04 3 #> 150 9768.94482 -1.192784e+04 3 #> 151 10062.61797 -1.102401e+04 3 #> 152 10240.69510 -1.009050e+04 3 #> 153 10300.36784 -9.142026e+03 3 #> 154 4337.41301 4.801407e+03 4 #> 155 4312.28524 5.200801e+03 4 #> 156 4237.29820 5.593897e+03 4 #> 157 4113.63449 5.974495e+03 4 #> 158 3943.24435 6.336592e+03 4 #> 159 3728.81495 6.674479e+03 4 #> 160 3473.72795 6.982826e+03 4 #> 161 3182.00624 7.256771e+03 4 #> 162 2858.25044 7.491994e+03 4 #> 163 2507.56637 7.684784e+03 4 #> 164 2135.48453 7.832101e+03 4 #> 165 1747.87287 7.931623e+03 4 #> 166 1350.84426 7.981780e+03 4 #> 167 950.66009 7.981780e+03 4 #> 168 553.63148 7.931623e+03 4 #> 169 166.01982 7.832101e+03 4 #> 170 -206.06202 7.684784e+03 4 #> 171 -556.74609 7.491994e+03 4 #> 172 -880.50189 7.256771e+03 4 #> 173 -1172.22360 6.982826e+03 4 #> 174 -1427.31060 6.674479e+03 4 #> 175 -1641.74000 6.336592e+03 4 #> 176 -1812.13014 5.974495e+03 4 #> 177 -1935.79385 5.593897e+03 4 #> 178 -2010.78089 5.200801e+03 4 #> 179 -2035.90866 4.801407e+03 4 #> 180 -2010.78089 4.402012e+03 4 #> 181 -1935.79385 4.008917e+03 4 #> 182 -1812.13014 3.628319e+03 4 #> 183 -1641.74000 3.266221e+03 4 #> 184 -1427.31060 2.928335e+03 4 #> 185 -1172.22360 2.619987e+03 4 #> 186 -880.50189 2.346042e+03 4 #> 187 -556.74609 2.110820e+03 4 #> 188 -206.06202 1.918030e+03 4 #> 189 166.01982 1.770712e+03 4 #> 190 553.63148 1.671191e+03 4 #> 191 950.66009 1.621034e+03 4 #> 192 1350.84426 1.621034e+03 4 #> 193 1747.87287 1.671191e+03 4 #> 194 2135.48453 1.770712e+03 4 #> 195 2507.56637 1.918030e+03 4 #> 196 2858.25044 2.110820e+03 4 #> 197 3182.00624 2.346042e+03 4 #> 198 3473.72795 2.619987e+03 4 #> 199 3728.81495 2.928335e+03 4 #> 200 3943.24435 3.266221e+03 4 #> 201 4113.63449 3.628319e+03 4 #> 202 4237.29820 4.008917e+03 4 #> 203 4312.28524 4.402012e+03 4 #> 204 4337.41301 4.801407e+03 4 #> 205 7494.82200 1.302381e+03 5 #> 206 7477.30871 1.580746e+03 5 #> 207 7425.04505 1.854722e+03 5 #> 208 7338.85523 2.119987e+03 5 #> 209 7220.09852 2.372358e+03 5 #> 210 7070.64780 2.607855e+03 5 #> 211 6892.85998 2.822763e+03 5 #> 212 6689.53889 3.013694e+03 5 #> 213 6463.89102 3.177637e+03 5 #> 214 6219.47497 3.312006e+03 5 #> 215 5960.14533 3.414682e+03 5 #> 216 5689.99188 3.484045e+03 5 #> 217 5413.27511 3.519003e+03 5 #> 218 5134.35900 3.519003e+03 5 #> 219 4857.64223 3.484045e+03 5 #> 220 4587.48879 3.414682e+03 5 #> 221 4328.15915 3.312006e+03 5 #> 222 4083.74310 3.177637e+03 5 #> 223 3858.09523 3.013694e+03 5 #> 224 3654.77414 2.822763e+03 5 #> 225 3476.98632 2.607855e+03 5 #> 226 3327.53559 2.372358e+03 5 #> 227 3208.77889 2.119987e+03 5 #> 228 3122.58907 1.854722e+03 5 #> 229 3070.32540 1.580746e+03 5 #> 230 3052.81212 1.302381e+03 5 #> 231 3070.32540 1.024015e+03 5 #> 232 3122.58907 7.500391e+02 5 #> 233 3208.77889 4.847741e+02 5 #> 234 3327.53559 2.324033e+02 5 #> 235 3476.98632 -3.093392e+00 5 #> 236 3654.77414 -2.180019e+02 5 #> 237 3858.09523 -4.089332e+02 5 #> 238 4083.74310 -5.728759e+02 5 #> 239 4328.15915 -7.072448e+02 5 #> 240 4587.48879 -8.099207e+02 5 #> 241 4857.64223 -8.792843e+02 5 #> 242 5134.35900 -9.142417e+02 5 #> 243 5413.27511 -9.142417e+02 5 #> 244 5689.99188 -8.792843e+02 5 #> 245 5960.14533 -8.099207e+02 5 #> 246 6219.47497 -7.072448e+02 5 #> 247 6463.89102 -5.728759e+02 5 #> 248 6689.53889 -4.089332e+02 5 #> 249 6892.85998 -2.180019e+02 5 #> 250 7070.64780 -3.093392e+00 5 #> 251 7220.09852 2.324033e+02 5 #> 252 7338.85523 4.847741e+02 5 #> 253 7425.04505 7.500391e+02 5 #> 254 7477.30871 1.024015e+03 5 #> 255 7494.82200 1.302381e+03 5 #> 256 14175.26866 -1.160651e+03 6 #> 257 14146.77956 -7.078296e+02 6 #> 258 14061.76155 -2.621496e+02 6 #> 259 13921.55543 1.693605e+02 6 #> 260 13728.37231 5.798955e+02 6 #> 261 13485.25882 9.629811e+02 6 #> 262 13196.04900 1.312576e+03 6 #> 263 12865.30386 1.623166e+03 6 #> 264 12498.23945 1.889854e+03 6 #> 265 12100.64460 2.108434e+03 6 #> 266 11678.78961 2.275458e+03 6 #> 267 11239.32738 2.388293e+03 6 #> 268 10789.18851 2.445158e+03 6 #> 269 10335.47195 2.445158e+03 6 #> 270 9885.33308 2.388293e+03 6 #> 271 9445.87086 2.275458e+03 6 #> 272 9024.01587 2.108434e+03 6 #> 273 8626.42101 1.889854e+03 6 #> 274 8259.35661 1.623166e+03 6 #> 275 7928.61147 1.312576e+03 6 #> 276 7639.40165 9.629811e+02 6 #> 277 7396.28815 5.798955e+02 6 #> 278 7203.10504 1.693605e+02 6 #> 279 7062.89891 -2.621496e+02 6 #> 280 6977.88090 -7.078296e+02 6 #> 281 6949.39181 -1.160651e+03 6 #> 282 6977.88090 -1.613472e+03 6 #> 283 7062.89891 -2.059152e+03 6 #> 284 7203.10504 -2.490662e+03 6 #> 285 7396.28815 -2.901197e+03 6 #> 286 7639.40165 -3.284283e+03 6 #> 287 7928.61147 -3.633877e+03 6 #> 288 8259.35661 -3.944468e+03 6 #> 289 8626.42101 -4.211156e+03 6 #> 290 9024.01587 -4.429735e+03 6 #> 291 9445.87086 -4.596759e+03 6 #> 292 9885.33308 -4.709594e+03 6 #> 293 10335.47195 -4.766460e+03 6 #> 294 10789.18851 -4.766460e+03 6 #> 295 11239.32738 -4.709594e+03 6 #> 296 11678.78961 -4.596759e+03 6 #> 297 12100.64460 -4.429735e+03 6 #> 298 12498.23945 -4.211156e+03 6 #> 299 12865.30386 -3.944468e+03 6 #> 300 13196.04900 -3.633877e+03 6 #> 301 13485.25882 -3.284283e+03 6 #> 302 13728.37231 -2.901197e+03 6 #> 303 13921.55543 -2.490662e+03 6 #> 304 14061.76155 -2.059152e+03 6 #> 305 14146.77956 -1.613472e+03 6 #> 306 14175.26866 -1.160651e+03 6 #> 307 -3468.26547 -4.469205e+03 7 #> 308 -3476.97756 -4.330730e+03 7 #> 309 -3502.97642 -4.194439e+03 7 #> 310 -3545.85205 -4.062482e+03 7 #> 311 -3604.92825 -3.936938e+03 7 #> 312 -3679.27338 -3.819789e+03 7 #> 313 -3767.71496 -3.712882e+03 7 #> 314 -3868.85822 -3.617902e+03 7 #> 315 -3981.10805 -3.536348e+03 7 #> 316 -4102.69423 -3.469505e+03 7 #> 317 -4231.69926 -3.418428e+03 7 #> 318 -4366.08866 -3.383923e+03 7 #> 319 -4503.74301 -3.366533e+03 7 #> 320 -4642.49145 -3.366533e+03 7 #> 321 -4780.14580 -3.383923e+03 7 #> 322 -4914.53520 -3.418428e+03 7 #> 323 -5043.54023 -3.469505e+03 7 #> 324 -5165.12641 -3.536348e+03 7 #> 325 -5277.37625 -3.617902e+03 7 #> 326 -5378.51950 -3.712882e+03 7 #> 327 -5466.96108 -3.819789e+03 7 #> 328 -5541.30621 -3.936938e+03 7 #> 329 -5600.38241 -4.062482e+03 7 #> 330 -5643.25804 -4.194439e+03 7 #> 331 -5669.25690 -4.330730e+03 7 #> 332 -5677.96899 -4.469205e+03 7 #> 333 -5669.25690 -4.607679e+03 7 #> 334 -5643.25804 -4.743970e+03 7 #> 335 -5600.38241 -4.875928e+03 7 #> 336 -5541.30621 -5.001471e+03 7 #> 337 -5466.96108 -5.118620e+03 7 #> 338 -5378.51950 -5.225528e+03 7 #> 339 -5277.37625 -5.320508e+03 7 #> 340 -5165.12641 -5.402062e+03 7 #> 341 -5043.54023 -5.468905e+03 7 #> 342 -4914.53520 -5.519981e+03 7 #> 343 -4780.14580 -5.554487e+03 7 #> 344 -4642.49145 -5.571876e+03 7 #> 345 -4503.74301 -5.571876e+03 7 #> 346 -4366.08866 -5.554487e+03 7 #> 347 -4231.69926 -5.519981e+03 7 #> 348 -4102.69423 -5.468905e+03 7 #> 349 -3981.10805 -5.402062e+03 7 #> 350 -3868.85822 -5.320508e+03 7 #> 351 -3767.71496 -5.225528e+03 7 #> 352 -3679.27338 -5.118620e+03 7 #> 353 -3604.92825 -5.001471e+03 7 #> 354 -3545.85205 -4.875928e+03 7 #> 355 -3502.97642 -4.743970e+03 7 #> 356 -3476.97756 -4.607679e+03 7 #> 357 -3468.26547 -4.469205e+03 7 #> 358 -5562.81228 -3.646655e+03 8 #> 359 -5577.71876 -3.409723e+03 8 #> 360 -5622.20311 -3.176528e+03 8 #> 361 -5695.56379 -2.950747e+03 8 #> 362 -5796.64385 -2.735941e+03 8 #> 363 -5923.84921 -2.535497e+03 8 #> 364 -6075.17376 -2.352577e+03 8 #> 365 -6248.23102 -2.190066e+03 8 #> 366 -6440.29177 -2.050525e+03 8 #> 367 -6648.32710 -1.936157e+03 8 #> 368 -6869.05617 -1.848764e+03 8 #> 369 -7098.99795 -1.789725e+03 8 #> 370 -7334.52612 -1.759971e+03 8 #> 371 -7571.92627 -1.759971e+03 8 #> 372 -7807.45444 -1.789725e+03 8 #> 373 -8037.39622 -1.848764e+03 8 #> 374 -8258.12529 -1.936157e+03 8 #> 375 -8466.16063 -2.050525e+03 8 #> 376 -8658.22138 -2.190066e+03 8 #> 377 -8831.27863 -2.352577e+03 8 #> 378 -8982.60318 -2.535497e+03 8 #> 379 -9109.80854 -2.735941e+03 8 #> 380 -9210.88860 -2.950747e+03 8 #> 381 -9284.24928 -3.176528e+03 8 #> 382 -9328.73363 -3.409723e+03 8 #> 383 -9343.64011 -3.646655e+03 8 #> 384 -9328.73363 -3.883586e+03 8 #> 385 -9284.24928 -4.116781e+03 8 #> 386 -9210.88860 -4.342562e+03 8 #> 387 -9109.80854 -4.557369e+03 8 #> 388 -8982.60318 -4.757812e+03 8 #> 389 -8831.27863 -4.940732e+03 8 #> 390 -8658.22138 -5.103244e+03 8 #> 391 -8466.16063 -5.242784e+03 8 #> 392 -8258.12529 -5.357152e+03 8 #> 393 -8037.39622 -5.444545e+03 8 #> 394 -7807.45444 -5.503584e+03 8 #> 395 -7571.92627 -5.533338e+03 8 #> 396 -7334.52612 -5.533338e+03 8 #> 397 -7098.99795 -5.503584e+03 8 #> 398 -6869.05617 -5.444545e+03 8 #> 399 -6648.32710 -5.357152e+03 8 #> 400 -6440.29177 -5.242784e+03 8 #> 401 -6248.23102 -5.103244e+03 8 #> 402 -6075.17376 -4.940732e+03 8 #> 403 -5923.84921 -4.757812e+03 8 #> 404 -5796.64385 -4.557369e+03 8 #> 405 -5695.56379 -4.342562e+03 8 #> 406 -5622.20311 -4.116781e+03 8 #> 407 -5577.71876 -3.883586e+03 8 #> 408 -5562.81228 -3.646655e+03 8 #> 409 -6977.29736 -2.999554e+02 9 #> 410 -6990.38193 -9.198215e+01 9 #> 411 -7029.42928 1.127112e+02 9 #> 412 -7093.82361 3.108966e+02 9 #> 413 -7182.54939 4.994485e+02 9 #> 414 -7294.20735 6.753933e+02 9 #> 415 -7427.03659 8.359562e+02 9 #> 416 -7578.94230 9.786052e+02 9 #> 417 -7747.52885 1.101090e+03 9 #> 418 -7930.13752 1.201480e+03 9 #> 419 -8123.88846 1.278192e+03 9 #> 420 -8325.72612 1.330015e+03 9 #> 421 -8532.46738 1.356132e+03 9 #> 422 -8740.85181 1.356132e+03 9 #> 423 -8947.59307 1.330015e+03 9 #> 424 -9149.43072 1.278192e+03 9 #> 425 -9343.18167 1.201480e+03 9 #> 426 -9525.79034 1.101090e+03 9 #> 427 -9694.37689 9.786052e+02 9 #> 428 -9846.28260 8.359562e+02 9 #> 429 -9979.11184 6.753933e+02 9 #> 430 -10090.76980 4.994485e+02 9 #> 431 -10179.49558 3.108966e+02 9 #> 432 -10243.88991 1.127112e+02 9 #> 433 -10282.93726 -9.198215e+01 9 #> 434 -10296.02182 -2.999554e+02 9 #> 435 -10282.93726 -5.079286e+02 9 #> 436 -10243.88991 -7.126220e+02 9 #> 437 -10179.49558 -9.108074e+02 9 #> 438 -10090.76980 -1.099359e+03 9 #> 439 -9979.11184 -1.275304e+03 9 #> 440 -9846.28260 -1.435867e+03 9 #> 441 -9694.37689 -1.578516e+03 9 #> 442 -9525.79034 -1.701001e+03 9 #> 443 -9343.18167 -1.801391e+03 9 #> 444 -9149.43072 -1.878103e+03 9 #> 445 -8947.59307 -1.929926e+03 9 #> 446 -8740.85181 -1.956043e+03 9 #> 447 -8532.46738 -1.956043e+03 9 #> 448 -8325.72612 -1.929926e+03 9 #> 449 -8123.88846 -1.878103e+03 9 #> 450 -7930.13752 -1.801391e+03 9 #> 451 -7747.52885 -1.701001e+03 9 #> 452 -7578.94230 -1.578516e+03 9 #> 453 -7427.03659 -1.435867e+03 9 #> 454 -7294.20735 -1.275304e+03 9 #> 455 -7182.54939 -1.099359e+03 9 #> 456 -7093.82361 -9.108074e+02 9 #> 457 -7029.42928 -7.126220e+02 9 #> 458 -6990.38193 -5.079286e+02 9 #> 459 -6977.29736 -2.999554e+02 9 #> 460 -5880.20875 3.314789e+03 10 #> 461 -5896.20047 3.568970e+03 10 #> 462 -5943.92344 3.819142e+03 10 #> 463 -6022.62502 4.061361e+03 10 #> 464 -6131.06406 4.291806e+03 10 #> 465 -6267.53041 4.506842e+03 10 #> 466 -6429.87190 4.703079e+03 10 #> 467 -6615.52832 4.877422e+03 10 #> 468 -6821.57175 5.027122e+03 10 #> 469 -7044.75277 5.149817e+03 10 #> 470 -7281.55168 5.243572e+03 10 #> 471 -7528.23401 5.306909e+03 10 #> 472 -7780.90944 5.338829e+03 10 #> 473 -8035.59313 5.338829e+03 10 #> 474 -8288.26856 5.306909e+03 10 #> 475 -8534.95089 5.243572e+03 10 #> 476 -8771.74980 5.149817e+03 10 #> 477 -8994.93082 5.027122e+03 10 #> 478 -9200.97425 4.877422e+03 10 #> 479 -9386.63067 4.703079e+03 10 #> 480 -9548.97216 4.506842e+03 10 #> 481 -9685.43851 4.291806e+03 10 #> 482 -9793.87755 4.061361e+03 10 #> 483 -9872.57913 3.819142e+03 10 #> 484 -9920.30210 3.568970e+03 10 #> 485 -9936.29382 3.314789e+03 10 #> 486 -9920.30210 3.060608e+03 10 #> 487 -9872.57913 2.810435e+03 10 #> 488 -9793.87755 2.568217e+03 10 #> 489 -9685.43851 2.337772e+03 10 #> 490 -9548.97216 2.122735e+03 10 #> 491 -9386.63067 1.926498e+03 10 #> 492 -9200.97425 1.752155e+03 10 #> 493 -8994.93082 1.602456e+03 10 #> 494 -8771.74980 1.479761e+03 10 #> 495 -8534.95089 1.386006e+03 10 #> 496 -8288.26856 1.322668e+03 10 #> 497 -8035.59313 1.290748e+03 10 #> 498 -7780.90944 1.290748e+03 10 #> 499 -7528.23401 1.322668e+03 10 #> 500 -7281.55168 1.386006e+03 10 #> 501 -7044.75277 1.479761e+03 10 #> 502 -6821.57175 1.602456e+03 10 #> 503 -6615.52832 1.752155e+03 10 #> 504 -6429.87190 1.926498e+03 10 #> 505 -6267.53041 2.122735e+03 10 #> 506 -6131.06406 2.337772e+03 10 #> 507 -6022.62502 2.568217e+03 10 #> 508 -5943.92344 2.810435e+03 10 #> 509 -5896.20047 3.060608e+03 10 #> 510 -5880.20875 3.314789e+03 10 #> 511 -3347.07554 4.746577e+03 11 #> 512 -3358.28942 4.924816e+03 11 #> 513 -3391.75421 5.100245e+03 11 #> 514 -3446.94215 5.270096e+03 11 #> 515 -3522.98290 5.431690e+03 11 #> 516 -3618.67724 5.582481e+03 11 #> 517 -3732.51602 5.720088e+03 11 #> 518 -3862.70394 5.842343e+03 11 #> 519 -4007.18785 5.947316e+03 11 #> 520 -4163.68915 6.033354e+03 11 #> 521 -4329.73973 6.099098e+03 11 #> 522 -4502.72087 6.143512e+03 11 #> 523 -4679.90456 6.165895e+03 11 #> 524 -4858.49649 6.165895e+03 11 #> 525 -5035.68017 6.143512e+03 11 #> 526 -5208.66131 6.099098e+03 11 #> 527 -5374.71189 6.033354e+03 11 #> 528 -5531.21320 5.947316e+03 11 #> 529 -5675.69710 5.842343e+03 11 #> 530 -5805.88502 5.720088e+03 11 #> 531 -5919.72380 5.582481e+03 11 #> 532 -6015.41815 5.431690e+03 11 #> 533 -6091.45889 5.270096e+03 11 #> 534 -6146.64684 5.100245e+03 11 #> 535 -6180.11163 4.924816e+03 11 #> 536 -6191.32551 4.746577e+03 11 #> 537 -6180.11163 4.568337e+03 11 #> 538 -6146.64684 4.392908e+03 11 #> 539 -6091.45889 4.223057e+03 11 #> 540 -6015.41815 4.061463e+03 11 #> 541 -5919.72380 3.910672e+03 11 #> 542 -5805.88502 3.773065e+03 11 #> 543 -5675.69710 3.650810e+03 11 #> 544 -5531.21320 3.545837e+03 11 #> 545 -5374.71189 3.459799e+03 11 #> 546 -5208.66131 3.394055e+03 11 #> 547 -5035.68017 3.349641e+03 11 #> 548 -4858.49649 3.327258e+03 11 #> 549 -4679.90456 3.327258e+03 11 #> 550 -4502.72087 3.349641e+03 11 #> 551 -4329.73973 3.394055e+03 11 #> 552 -4163.68915 3.459799e+03 11 #> 553 -4007.18785 3.545837e+03 11 #> 554 -3862.70394 3.650810e+03 11 #> 555 -3732.51602 3.773065e+03 11 #> 556 -3618.67724 3.910672e+03 11 #> 557 -3522.98290 4.061463e+03 11 #> 558 -3446.94215 4.223057e+03 11 #> 559 -3391.75421 4.392908e+03 11 #> 560 -3358.28942 4.568337e+03 11 #> 561 -3347.07554 4.746577e+03 11 #> 562 -1198.11772 7.593956e+03 12 #> 563 -1212.99206 7.830377e+03 12 #> 564 -1257.38053 8.063070e+03 12 #> 565 -1330.58307 8.288364e+03 12 #> 566 -1431.44525 8.502707e+03 12 #> 567 -1558.37641 8.702719e+03 12 #> 568 -1709.37477 8.885244e+03 12 #> 569 -1882.05899 9.047406e+03 12 #> 570 -2073.70574 9.186645e+03 12 #> 571 -2281.29263 9.300767e+03 12 #> 572 -2501.54591 9.387971e+03 12 #> 573 -2730.99203 9.446883e+03 12 #> 574 -2966.01251 9.476573e+03 12 #> 575 -3202.90092 9.476573e+03 12 #> 576 -3437.92140 9.446883e+03 12 #> 577 -3667.36752 9.387971e+03 12 #> 578 -3887.62080 9.300767e+03 12 #> 579 -4095.20769 9.186645e+03 12 #> 580 -4286.85444 9.047406e+03 12 #> 581 -4459.53866 8.885244e+03 12 #> 582 -4610.53702 8.702719e+03 12 #> 583 -4737.46818 8.502707e+03 12 #> 584 -4838.33036 8.288364e+03 12 #> 585 -4911.53290 8.063070e+03 12 #> 586 -4955.92136 7.830377e+03 12 #> 587 -4970.79571 7.593956e+03 12 #> 588 -4955.92136 7.357535e+03 12 #> 589 -4911.53290 7.124843e+03 12 #> 590 -4838.33036 6.899549e+03 12 #> 591 -4737.46818 6.685206e+03 12 #> 592 -4610.53702 6.485194e+03 12 #> 593 -4459.53866 6.302669e+03 12 #> 594 -4286.85444 6.140507e+03 12 #> 595 -4095.20769 6.001268e+03 12 #> 596 -3887.62080 5.887146e+03 12 #> 597 -3667.36752 5.799941e+03 12 #> 598 -3437.92140 5.741030e+03 12 #> 599 -3202.90092 5.711340e+03 12 #> 600 -2966.01251 5.711340e+03 12 #> 601 -2730.99203 5.741030e+03 12 #> 602 -2501.54591 5.799941e+03 12 #> 603 -2281.29263 5.887146e+03 12 #> 604 -2073.70574 6.001268e+03 12 #> 605 -1882.05899 6.140507e+03 12 #> 606 -1709.37477 6.302669e+03 12 #> 607 -1558.37641 6.485194e+03 12 #> 608 -1431.44525 6.685206e+03 12 #> 609 -1330.58307 6.899549e+03 12 #> 610 -1257.38053 7.124843e+03 12 #> 611 -1212.99206 7.357535e+03 12 #> 612 -1198.11772 7.593956e+03 12 #> 613 1422.46751 9.366980e+03 13 #> 614 1410.19684 9.562016e+03 13 #> 615 1373.57832 9.753977e+03 13 #> 616 1313.18947 9.939835e+03 13 #> 617 1229.98264 1.011666e+04 13 #> 618 1125.27006 1.028166e+04 13 #> 619 1000.70311 1.043223e+04 13 #> 620 858.24629 1.056601e+04 13 #> 621 700.14621 1.068088e+04 13 #> 622 528.89623 1.077502e+04 13 #> 623 347.19704 1.084696e+04 13 #> 624 157.91416 1.089556e+04 13 #> 625 -35.96732 1.092006e+04 13 #> 626 -231.38975 1.092006e+04 13 #> 627 -425.27123 1.089556e+04 13 #> 628 -614.55411 1.084696e+04 13 #> 629 -796.25330 1.077502e+04 13 #> 630 -967.50329 1.068088e+04 13 #> 631 -1125.60336 1.056601e+04 13 #> 632 -1268.06018 1.043223e+04 13 #> 633 -1392.62713 1.028166e+04 13 #> 634 -1497.33971 1.011666e+04 13 #> 635 -1580.54654 9.939835e+03 13 #> 636 -1640.93539 9.753977e+03 13 #> 637 -1677.55391 9.562016e+03 13 #> 638 -1689.82458 9.366980e+03 13 #> 639 -1677.55391 9.171943e+03 13 #> 640 -1640.93539 8.979982e+03 13 #> 641 -1580.54654 8.794124e+03 13 #> 642 -1497.33971 8.617301e+03 13 #> 643 -1392.62713 8.452300e+03 13 #> 644 -1268.06018 8.301724e+03 13 #> 645 -1125.60336 8.167949e+03 13 #> 646 -967.50329 8.053082e+03 13 #> 647 -796.25330 7.958937e+03 13 #> 648 -614.55411 7.886997e+03 13 #> 649 -425.27123 7.838397e+03 13 #> 650 -231.38975 7.813904e+03 13 #> 651 -35.96732 7.813904e+03 13 #> 652 157.91416 7.838397e+03 13 #> 653 347.19704 7.886997e+03 13 #> 654 528.89623 7.958937e+03 13 #> 655 700.14621 8.053082e+03 13 #> 656 858.24629 8.167949e+03 13 #> 657 1000.70311 8.301724e+03 13 #> 658 1125.27006 8.452300e+03 13 #> 659 1229.98264 8.617301e+03 13 #> 660 1313.18947 8.794124e+03 13 #> 661 1373.57832 8.979982e+03 13 #> 662 1410.19684 9.171943e+03 13 #> 663 1422.46751 9.366980e+03 13 #> 664 4327.79784 9.116083e+03 14 #> 665 4316.30190 9.298805e+03 14 #> 666 4281.99537 9.478647e+03 14 #> 667 4225.41929 9.652770e+03 14 #> 668 4147.46590 9.818429e+03 14 #> 669 4049.36456 9.973012e+03 14 #> 670 3932.66240 1.011408e+04 14 #> 671 3799.19988 1.023941e+04 14 #> 672 3651.08178 1.034702e+04 14 #> 673 3490.64401 1.043523e+04 14 #> 674 3320.41677 1.050262e+04 14 #> 675 3143.08465 1.054815e+04 14 #> 676 2961.44429 1.057110e+04 14 #> 677 2778.36024 1.057110e+04 14 #> 678 2596.71987 1.054815e+04 14 #> 679 2419.38776 1.050262e+04 14 #> 680 2249.16052 1.043523e+04 14 #> 681 2088.72275 1.034702e+04 14 #> 682 1940.60465 1.023941e+04 14 #> 683 1807.14213 1.011408e+04 14 #> 684 1690.43997 9.973012e+03 14 #> 685 1592.33863 9.818429e+03 14 #> 686 1514.38524 9.652770e+03 14 #> 687 1457.80916 9.478647e+03 14 #> 688 1423.50263 9.298805e+03 14 #> 689 1412.00669 9.116083e+03 14 #> 690 1423.50263 8.933360e+03 14 #> 691 1457.80916 8.753519e+03 14 #> 692 1514.38524 8.579396e+03 14 #> 693 1592.33863 8.413736e+03 14 #> 694 1690.43997 8.259153e+03 14 #> 695 1807.14213 8.118084e+03 14 #> 696 1940.60465 7.992755e+03 14 #> 697 2088.72275 7.885141e+03 14 #> 698 2249.16052 7.796939e+03 14 #> 699 2419.38776 7.729542e+03 14 #> 700 2596.71987 7.684010e+03 14 #> 701 2778.36024 7.661064e+03 14 #> 702 2961.44429 7.661064e+03 14 #> 703 3143.08465 7.684010e+03 14 #> 704 3320.41677 7.729542e+03 14 #> 705 3490.64401 7.796939e+03 14 #> 706 3651.08178 7.885141e+03 14 #> 707 3799.19988 7.992755e+03 14 #> 708 3932.66240 8.118084e+03 14 #> 709 4049.36456 8.259153e+03 14 #> 710 4147.46590 8.413736e+03 14 #> 711 4225.41929 8.579396e+03 14 #> 712 4281.99537 8.753519e+03 14 #> 713 4316.30190 8.933360e+03 14 #> 714 4327.79784 9.116083e+03 14 #> 715 5330.20420 7.302394e+03 15 #> 716 5322.94207 7.417823e+03 15 #> 717 5301.27021 7.531431e+03 15 #> 718 5265.53039 7.641426e+03 15 #> 719 5216.28626 7.746075e+03 15 #> 720 5154.31442 7.843727e+03 15 #> 721 5080.59221 7.932842e+03 15 #> 722 4996.28227 8.012015e+03 15 #> 723 4902.71421 8.079996e+03 15 #> 724 4801.36367 8.135714e+03 15 #> 725 4693.82900 8.178290e+03 15 #> 726 4581.80608 8.207052e+03 15 #> 727 4467.06159 8.221548e+03 15 #> 728 4351.40512 8.221548e+03 15 #> 729 4236.66063 8.207052e+03 15 #> 730 4124.63771 8.178290e+03 15 #> 731 4017.10304 8.135714e+03 15 #> 732 3915.75250 8.079996e+03 15 #> 733 3822.18444 8.012015e+03 15 #> 734 3737.87450 7.932842e+03 15 #> 735 3664.15229 7.843727e+03 15 #> 736 3602.18045 7.746075e+03 15 #> 737 3552.93632 7.641426e+03 15 #> 738 3517.19650 7.531431e+03 15 #> 739 3495.52464 7.417823e+03 15 #> 740 3488.26251 7.302394e+03 15 #> 741 3495.52464 7.186966e+03 15 #> 742 3517.19650 7.073358e+03 15 #> 743 3552.93632 6.963362e+03 15 #> 744 3602.18045 6.858713e+03 15 #> 745 3664.15229 6.761061e+03 15 #> 746 3737.87450 6.671946e+03 15 #> 747 3822.18444 6.592774e+03 15 #> 748 3915.75250 6.524793e+03 15 #> 749 4017.10304 6.469075e+03 15 #> 750 4124.63771 6.426499e+03 15 #> 751 4236.66063 6.397736e+03 15 #> 752 4351.40512 6.383241e+03 15 #> 753 4467.06159 6.383241e+03 15 #> 754 4581.80608 6.397736e+03 15 #> 755 4693.82900 6.426499e+03 15 #> 756 4801.36367 6.469075e+03 15 #> 757 4902.71421 6.524793e+03 15 #> 758 4996.28227 6.592774e+03 15 #> 759 5080.59221 6.671946e+03 15 #> 760 5154.31442 6.761061e+03 15 #> 761 5216.28626 6.858713e+03 15 #> 762 5265.53039 6.963362e+03 15 #> 763 5301.27021 7.073358e+03 15 #> 764 5322.94207 7.186966e+03 15 #> 765 5330.20420 7.302394e+03 15 #> 766 16698.14682 8.154050e+03 16 #> 767 16653.11053 8.869881e+03 16 #> 768 16518.71190 9.574423e+03 16 #> 769 16297.07049 1.025657e+04 16 #> 770 15991.68171 1.090555e+04 16 #> 771 15607.36173 1.151114e+04 16 #> 772 15150.17150 1.206379e+04 16 #> 773 14627.32118 1.255478e+04 16 #> 774 14047.05644 1.297637e+04 16 #> 775 13418.52839 1.332190e+04 16 #> 776 12751.64930 1.358594e+04 16 #> 777 12056.93626 1.376431e+04 16 #> 778 11345.34529 1.385420e+04 16 #> 779 10628.09863 1.385420e+04 16 #> 780 9916.50766 1.376431e+04 16 #> 781 9221.79462 1.358594e+04 16 #> 782 8554.91553 1.332190e+04 16 #> 783 7926.38748 1.297637e+04 16 #> 784 7346.12274 1.255478e+04 16 #> 785 6823.27242 1.206379e+04 16 #> 786 6366.08219 1.151114e+04 16 #> 787 5981.76220 1.090555e+04 16 #> 788 5676.37343 1.025657e+04 16 #> 789 5454.73202 9.574423e+03 16 #> 790 5320.33339 8.869881e+03 16 #> 791 5275.29710 8.154050e+03 16 #> 792 5320.33339 7.438218e+03 16 #> 793 5454.73202 6.733676e+03 16 #> 794 5676.37343 6.051534e+03 16 #> 795 5981.76220 5.402550e+03 16 #> 796 6366.08219 4.796958e+03 16 #> 797 6823.27242 4.244310e+03 16 #> 798 7346.12274 3.753321e+03 16 #> 799 7926.38748 3.331734e+03 16 #> 800 8554.91553 2.986198e+03 16 #> 801 9221.79462 2.722162e+03 16 #> 802 9916.50766 2.543790e+03 16 #> 803 10628.09863 2.453895e+03 16 #> 804 11345.34529 2.453895e+03 16 #> 805 12056.93626 2.543790e+03 16 #> 806 12751.64930 2.722162e+03 16 #> 807 13418.52839 2.986198e+03 16 #> 808 14047.05644 3.331734e+03 16 #> 809 14627.32118 3.753321e+03 16 #> 810 15150.17150 4.244310e+03 16 #> 811 15607.36173 4.796958e+03 16 #> 812 15991.68171 5.402550e+03 16 #> 813 16297.07049 6.051534e+03 16 #> 814 16518.71190 6.733676e+03 16 #> 815 16653.11053 7.438218e+03 16 #> 816 16698.14682 8.154050e+03 16 #> 817 -4448.32055 -6.555570e+03 17 #> 818 -4458.41340 -6.395149e+03 17 #> 819 -4488.53278 -6.237257e+03 17 #> 820 -4538.20370 -6.084386e+03 17 #> 821 -4606.64281 -5.938946e+03 17 #> 822 -4692.77078 -5.803230e+03 17 #> 823 -4795.22933 -5.679379e+03 17 #> 824 -4912.40263 -5.569345e+03 17 #> 825 -5042.44278 -5.474866e+03 17 #> 826 -5183.29896 -5.397429e+03 17 #> 827 -5332.74981 -5.338258e+03 17 #> 828 -5488.43837 -5.298284e+03 17 #> 829 -5647.90936 -5.278138e+03 17 #> 830 -5808.64783 -5.278138e+03 17 #> 831 -5968.11882 -5.298284e+03 17 #> 832 -6123.80738 -5.338258e+03 17 #> 833 -6273.25823 -5.397429e+03 17 #> 834 -6414.11441 -5.474866e+03 17 #> 835 -6544.15456 -5.569345e+03 17 #> 836 -6661.32786 -5.679379e+03 17 #> 837 -6763.78641 -5.803230e+03 17 #> 838 -6849.91438 -5.938946e+03 17 #> 839 -6918.35349 -6.084386e+03 17 #> 840 -6968.02441 -6.237257e+03 17 #> 841 -6998.14379 -6.395149e+03 17 #> 842 -7008.23664 -6.555570e+03 17 #> 843 -6998.14379 -6.715991e+03 17 #> 844 -6968.02441 -6.873883e+03 17 #> 845 -6918.35349 -7.026754e+03 17 #> 846 -6849.91438 -7.172195e+03 17 #> 847 -6763.78641 -7.307911e+03 17 #> 848 -6661.32786 -7.431762e+03 17 #> 849 -6544.15456 -7.541795e+03 17 #> 850 -6414.11441 -7.636274e+03 17 #> 851 -6273.25823 -7.713711e+03 17 #> 852 -6123.80738 -7.772883e+03 17 #> 853 -5968.11882 -7.812857e+03 17 #> 854 -5808.64783 -7.833002e+03 17 #> 855 -5647.90936 -7.833002e+03 17 #> 856 -5488.43837 -7.812857e+03 17 #> 857 -5332.74981 -7.772883e+03 17 #> 858 -5183.29896 -7.713711e+03 17 #> 859 -5042.44278 -7.636274e+03 17 #> 860 -4912.40263 -7.541795e+03 17 #> 861 -4795.22933 -7.431762e+03 17 #> 862 -4692.77078 -7.307911e+03 17 #> 863 -4606.64281 -7.172195e+03 17 #> 864 -4538.20370 -7.026754e+03 17 #> 865 -4488.53278 -6.873883e+03 17 #> 866 -4458.41340 -6.715991e+03 17 #> 867 -4448.32055 -6.555570e+03 17 #> 868 -7006.35981 -6.463573e+03 18 #> 869 -7014.05363 -6.341283e+03 18 #> 870 -7037.01377 -6.220922e+03 18 #> 871 -7074.87814 -6.104387e+03 18 #> 872 -7127.04957 -5.993517e+03 18 #> 873 -7192.70531 -5.890060e+03 18 #> 874 -7270.80992 -5.795648e+03 18 #> 875 -7360.13165 -5.711769e+03 18 #> 876 -7459.26183 -5.639747e+03 18 #> 877 -7566.63713 -5.580717e+03 18 #> 878 -7680.56417 -5.535610e+03 18 #> 879 -7799.24626 -5.505138e+03 18 #> 880 -7920.81171 -5.489780e+03 18 #> 881 -8043.34336 -5.489780e+03 18 #> 882 -8164.90880 -5.505138e+03 18 #> 883 -8283.59089 -5.535610e+03 18 #> 884 -8397.51794 -5.580717e+03 18 #> 885 -8504.89324 -5.639747e+03 18 #> 886 -8604.02342 -5.711769e+03 18 #> 887 -8693.34515 -5.795648e+03 18 #> 888 -8771.44976 -5.890060e+03 18 #> 889 -8837.10549 -5.993517e+03 18 #> 890 -8889.27693 -6.104387e+03 18 #> 891 -8927.14129 -6.220922e+03 18 #> 892 -8950.10143 -6.341283e+03 18 #> 893 -8957.79526 -6.463573e+03 18 #> 894 -8950.10143 -6.585862e+03 18 #> 895 -8927.14129 -6.706224e+03 18 #> 896 -8889.27693 -6.822758e+03 18 #> 897 -8837.10549 -6.933628e+03 18 #> 898 -8771.44976 -7.037085e+03 18 #> 899 -8693.34515 -7.131497e+03 18 #> 900 -8604.02342 -7.215376e+03 18 #> 901 -8504.89324 -7.287398e+03 18 #> 902 -8397.51794 -7.346428e+03 18 #> 903 -8283.59089 -7.391535e+03 18 #> 904 -8164.90880 -7.422008e+03 18 #> 905 -8043.34336 -7.437365e+03 18 #> 906 -7920.81171 -7.437365e+03 18 #> 907 -7799.24626 -7.422008e+03 18 #> 908 -7680.56417 -7.391535e+03 18 #> 909 -7566.63713 -7.346428e+03 18 #> 910 -7459.26183 -7.287398e+03 18 #> 911 -7360.13165 -7.215376e+03 18 #> 912 -7270.80992 -7.131497e+03 18 #> 913 -7192.70531 -7.037085e+03 18 #> 914 -7127.04957 -6.933628e+03 18 #> 915 -7074.87814 -6.822758e+03 18 #> 916 -7037.01377 -6.706224e+03 18 #> 917 -7014.05363 -6.585862e+03 18 #> 918 -7006.35981 -6.463573e+03 18 #> 919 -5524.96104 6.556342e+03 19 #> 920 -5535.75293 6.727874e+03 19 #> 921 -5567.95842 6.896701e+03 19 #> 922 -5621.06960 7.060161e+03 19 #> 923 -5694.24888 7.215675e+03 19 #> 924 -5786.34218 7.360790e+03 19 #> 925 -5895.89712 7.493220e+03 19 #> 926 -6021.18597 7.610874e+03 19 #> 927 -6160.23285 7.711897e+03 19 #> 928 -6310.84489 7.794697e+03 19 #> 929 -6470.64687 7.857967e+03 19 #> 930 -6637.11860 7.900709e+03 19 #> 931 -6807.63474 7.922251e+03 19 #> 932 -6979.50612 7.922251e+03 19 #> 933 -7150.02226 7.900709e+03 19 #> 934 -7316.49399 7.857967e+03 19 #> 935 -7476.29597 7.794697e+03 19 #> 936 -7626.90801 7.711897e+03 19 #> 937 -7765.95489 7.610874e+03 19 #> 938 -7891.24374 7.493220e+03 19 #> 939 -8000.79868 7.360790e+03 19 #> 940 -8092.89198 7.215675e+03 19 #> 941 -8166.07126 7.060161e+03 19 #> 942 -8219.18244 6.896701e+03 19 #> 943 -8251.38793 6.727874e+03 19 #> 944 -8262.17982 6.556342e+03 19 #> 945 -8251.38793 6.384810e+03 19 #> 946 -8219.18244 6.215983e+03 19 #> 947 -8166.07126 6.052523e+03 19 #> 948 -8092.89198 5.897009e+03 19 #> 949 -8000.79868 5.751894e+03 19 #> 950 -7891.24374 5.619464e+03 19 #> 951 -7765.95489 5.501810e+03 19 #> 952 -7626.90801 5.400787e+03 19 #> 953 -7476.29597 5.317987e+03 19 #> 954 -7316.49399 5.254717e+03 19 #> 955 -7150.02226 5.211974e+03 19 #> 956 -6979.50612 5.190433e+03 19 #> 957 -6807.63474 5.190433e+03 19 #> 958 -6637.11860 5.211974e+03 19 #> 959 -6470.64687 5.254717e+03 19 #> 960 -6310.84489 5.317987e+03 19 #> 961 -6160.23285 5.400787e+03 19 #> 962 -6021.18597 5.501810e+03 19 #> 963 -5895.89712 5.619464e+03 19 #> 964 -5786.34218 5.751894e+03 19 #> 965 -5694.24888 5.897009e+03 19 #> 966 -5621.06960 6.052523e+03 19 #> 967 -5567.95842 6.215983e+03 19 #> 968 -5535.75293 6.384810e+03 19 #> 969 -5524.96104 6.556342e+03 19 #> 970 -3712.37092 1.083600e+04 20 #> 971 -3735.38867 1.120186e+04 20 #> 972 -3804.07891 1.156195e+04 20 #> 973 -3917.35835 1.191058e+04 20 #> 974 -4073.44051 1.224228e+04 20 #> 975 -4269.86389 1.255179e+04 20 #> 976 -4503.53077 1.283424e+04 20 #> 977 -4770.75607 1.308519e+04 20 #> 978 -5067.32551 1.330066e+04 20 #> 979 -5388.56200 1.347726e+04 20 #> 980 -5729.39945 1.361220e+04 20 #> 981 -6084.46264 1.370337e+04 20 #> 982 -6448.15203 1.374931e+04 20 #> 983 -6814.73202 1.374931e+04 20 #> 984 -7178.42141 1.370337e+04 20 #> 985 -7533.48460 1.361220e+04 20 #> 986 -7874.32205 1.347726e+04 20 #> 987 -8195.55854 1.330066e+04 20 #> 988 -8492.12798 1.308519e+04 20 #> 989 -8759.35328 1.283424e+04 20 #> 990 -8993.02016 1.255179e+04 20 #> 991 -9189.44354 1.224228e+04 20 #> 992 -9345.52570 1.191058e+04 20 #> 993 -9458.80515 1.156195e+04 20 #> 994 -9527.49538 1.120186e+04 20 #> 995 -9550.51313 1.083600e+04 20 #> 996 -9527.49538 1.047015e+04 20 #> 997 -9458.80515 1.011006e+04 20 #> 998 -9345.52570 9.761421e+03 20 #> 999 -9189.44354 9.429729e+03 20 #> 1000 -8993.02016 9.120215e+03 20 #> 1001 -8759.35328 8.837761e+03 20 #> 1002 -8492.12798 8.586819e+03 20 #> 1003 -8195.55854 8.371349e+03 20 #> 1004 -7874.32205 8.194748e+03 20 #> 1005 -7533.48460 8.059801e+03 20 #> 1006 -7178.42141 7.968636e+03 20 #> 1007 -6814.73202 7.922691e+03 20 #> 1008 -6448.15203 7.922691e+03 20 #> 1009 -6084.46264 7.968636e+03 20 #> 1010 -5729.39945 8.059801e+03 20 #> 1011 -5388.56200 8.194748e+03 20 #> 1012 -5067.32551 8.371349e+03 20 #> 1013 -4770.75607 8.586819e+03 20 #> 1014 -4503.53077 8.837761e+03 20 #> 1015 -4269.86389 9.120215e+03 20 #> 1016 -4073.44051 9.429729e+03 20 #> 1017 -3917.35835 9.761421e+03 20 #> 1018 -3804.07891 1.011006e+04 20 #> 1019 -3735.38867 1.047015e+04 20 #> 1020 -3712.37092 1.083600e+04 20 #> 1021 -1505.63083 1.055152e+04 21 #> 1022 -1514.37090 1.069044e+04 21 #> 1023 -1540.45326 1.082716e+04 21 #> 1024 -1583.46658 1.095955e+04 21 #> 1025 -1642.73252 1.108549e+04 21 #> 1026 -1717.31641 1.120302e+04 21 #> 1027 -1806.04203 1.131027e+04 21 #> 1028 -1907.51011 1.140555e+04 21 #> 1029 -2020.12045 1.148737e+04 21 #> 1030 -2142.09711 1.155443e+04 21 #> 1031 -2271.51645 1.160567e+04 21 #> 1032 -2406.33745 1.164028e+04 21 #> 1033 -2544.43390 1.165773e+04 21 #> 1034 -2683.62793 1.165773e+04 21 #> 1035 -2821.72438 1.164028e+04 21 #> 1036 -2956.54538 1.160567e+04 21 #> 1037 -3085.96472 1.155443e+04 21 #> 1038 -3207.94138 1.148737e+04 21 #> 1039 -3320.55172 1.140555e+04 21 #> 1040 -3422.01980 1.131027e+04 21 #> 1041 -3510.74542 1.120302e+04 21 #> 1042 -3585.32931 1.108549e+04 21 #> 1043 -3644.59525 1.095955e+04 21 #> 1044 -3687.60857 1.082716e+04 21 #> 1045 -3713.69093 1.069044e+04 21 #> 1046 -3722.43100 1.055152e+04 21 #> 1047 -3713.69093 1.041260e+04 21 #> 1048 -3687.60857 1.027587e+04 21 #> 1049 -3644.59525 1.014349e+04 21 #> 1050 -3585.32931 1.001754e+04 21 #> 1051 -3510.74542 9.900015e+03 21 #> 1052 -3422.01980 9.792764e+03 21 #> 1053 -3320.55172 9.697480e+03 21 #> 1054 -3207.94138 9.615663e+03 21 #> 1055 -3085.96472 9.548606e+03 21 #> 1056 -2956.54538 9.497365e+03 21 #> 1057 -2821.72438 9.462749e+03 21 #> 1058 -2683.62793 9.445304e+03 21 #> 1059 -2544.43390 9.445304e+03 21 #> 1060 -2406.33745 9.462749e+03 21 #> 1061 -2271.51645 9.497365e+03 21 #> 1062 -2142.09711 9.548606e+03 21 #> 1063 -2020.12045 9.615663e+03 21 #> 1064 -1907.51011 9.697480e+03 21 #> 1065 -1806.04203 9.792764e+03 21 #> 1066 -1717.31641 9.900015e+03 21 #> 1067 -1642.73252 1.001754e+04 21 #> 1068 -1583.46658 1.014349e+04 21 #> 1069 -1540.45326 1.027587e+04 21 #> 1070 -1514.37090 1.041260e+04 21 #> 1071 -1505.63083 1.055152e+04 21 #> 1072 -491.71902 1.129376e+04 22 #> 1073 -496.38885 1.136798e+04 22 #> 1074 -510.32469 1.144104e+04 22 #> 1075 -533.30676 1.151177e+04 22 #> 1076 -564.97263 1.157906e+04 22 #> 1077 -604.82290 1.164186e+04 22 #> 1078 -652.22910 1.169916e+04 22 #> 1079 -706.44363 1.175007e+04 22 #> 1080 -766.61148 1.179379e+04 22 #> 1081 -831.78376 1.182962e+04 22 #> 1082 -900.93268 1.185699e+04 22 #> 1083 -972.96771 1.187549e+04 22 #> 1084 -1046.75282 1.188481e+04 22 #> 1085 -1121.12437 1.188481e+04 22 #> 1086 -1194.90947 1.187549e+04 22 #> 1087 -1266.94450 1.185699e+04 22 #> 1088 -1336.09342 1.182962e+04 22 #> 1089 -1401.26571 1.179379e+04 22 #> 1090 -1461.43355 1.175007e+04 22 #> 1091 -1515.64808 1.169916e+04 22 #> 1092 -1563.05429 1.164186e+04 22 #> 1093 -1602.90456 1.157906e+04 22 #> 1094 -1634.57042 1.151177e+04 22 #> 1095 -1657.55249 1.144104e+04 22 #> 1096 -1671.48833 1.136798e+04 22 #> 1097 -1676.15816 1.129376e+04 22 #> 1098 -1671.48833 1.121953e+04 22 #> 1099 -1657.55249 1.114648e+04 22 #> 1100 -1634.57042 1.107575e+04 22 #> 1101 -1602.90456 1.100846e+04 22 #> 1102 -1563.05429 1.094566e+04 22 #> 1103 -1515.64808 1.088836e+04 22 #> 1104 -1461.43355 1.083745e+04 22 #> 1105 -1401.26571 1.079373e+04 22 #> 1106 -1336.09342 1.075790e+04 22 #> 1107 -1266.94450 1.073053e+04 22 #> 1108 -1194.90947 1.071203e+04 22 #> 1109 -1121.12437 1.070271e+04 22 #> 1110 -1046.75282 1.070271e+04 22 #> 1111 -972.96771 1.071203e+04 22 #> 1112 -900.93268 1.073053e+04 22 #> 1113 -831.78376 1.075790e+04 22 #> 1114 -766.61148 1.079373e+04 22 #> 1115 -706.44363 1.083745e+04 22 #> 1116 -652.22910 1.088836e+04 22 #> 1117 -604.82290 1.094566e+04 22 #> 1118 -564.97263 1.100846e+04 22 #> 1119 -533.30676 1.107575e+04 22 #> 1120 -510.32469 1.114648e+04 22 #> 1121 -496.38885 1.121953e+04 22 #> 1122 -491.71902 1.129376e+04 22 #> 1123 -8956.93169 -6.598524e+03 23 #> 1124 -9032.38785 -5.399182e+03 23 #> 1125 -9257.56632 -4.218755e+03 23 #> 1126 -9628.91592 -3.075859e+03 23 #> 1127 -10140.58024 -1.988517e+03 23 #> 1128 -10784.49002 -9.738774e+02 23 #> 1129 -11550.49042 -4.794200e+01 23 #> 1130 -12426.50116 7.746868e+02 23 #> 1131 -13398.70703 1.481036e+03 23 #> 1132 -14451.77576 2.059965e+03 23 #> 1133 -15569.09982 2.502345e+03 23 #> 1134 -16733.05835 2.801199e+03 23 #> 1135 -17925.29503 2.951813e+03 23 #> 1136 -19127.00757 2.951813e+03 23 #> 1137 -20319.24425 2.801199e+03 23 #> 1138 -21483.20279 2.502345e+03 23 #> 1139 -22600.52685 2.059965e+03 23 #> 1140 -23653.59558 1.481036e+03 23 #> 1141 -24625.80145 7.746868e+02 23 #> 1142 -25501.81219 -4.794200e+01 23 #> 1143 -26267.81259 -9.738774e+02 23 #> 1144 -26911.72237 -1.988517e+03 23 #> 1145 -27423.38668 -3.075859e+03 23 #> 1146 -27794.73628 -4.218755e+03 23 #> 1147 -28019.91476 -5.399182e+03 23 #> 1148 -28095.37091 -6.598524e+03 23 #> 1149 -28019.91476 -7.797865e+03 23 #> 1150 -27794.73628 -8.978292e+03 23 #> 1151 -27423.38668 -1.012119e+04 23 #> 1152 -26911.72237 -1.120853e+04 23 #> 1153 -26267.81259 -1.222317e+04 23 #> 1154 -25501.81219 -1.314911e+04 23 #> 1155 -24625.80145 -1.397173e+04 23 #> 1156 -23653.59558 -1.467808e+04 23 #> 1157 -22600.52685 -1.525701e+04 23 #> 1158 -21483.20279 -1.569939e+04 23 #> 1159 -20319.24425 -1.599825e+04 23 #> 1160 -19127.00757 -1.614886e+04 23 #> 1161 -17925.29503 -1.614886e+04 23 #> 1162 -16733.05835 -1.599825e+04 23 #> 1163 -15569.09982 -1.569939e+04 23 #> 1164 -14451.77576 -1.525701e+04 23 #> 1165 -13398.70703 -1.467808e+04 23 #> 1166 -12426.50116 -1.397173e+04 23 #> 1167 -11550.49042 -1.314911e+04 23 #> 1168 -10784.49002 -1.222317e+04 23 #> 1169 -10140.58024 -1.120853e+04 23 #> 1170 -9628.91592 -1.012119e+04 23 #> 1171 -9257.56632 -8.978292e+03 23 #> 1172 -9032.38785 -7.797865e+03 23 #> 1173 -8956.93169 -6.598524e+03 23 #> 1174 -10007.31062 9.133993e+02 24 #> 1175 -10015.46915 1.043075e+03 24 #> 1176 -10039.81609 1.170707e+03 24 #> 1177 -10079.96746 1.294280e+03 24 #> 1178 -10135.29006 1.411846e+03 24 #> 1179 -10204.91142 1.521552e+03 24 #> 1180 -10287.73356 1.621667e+03 24 #> 1181 -10382.45034 1.710612e+03 24 #> 1182 -10487.56800 1.786984e+03 24 #> 1183 -10601.42879 1.849580e+03 24 #> 1184 -10722.23704 1.897411e+03 24 #> 1185 -10848.08755 1.929724e+03 24 #> 1186 -10976.99557 1.946009e+03 24 #> 1187 -11106.92815 1.946009e+03 24 #> 1188 -11235.83617 1.929724e+03 24 #> 1189 -11361.68668 1.897411e+03 24 #> 1190 -11482.49494 1.849580e+03 24 #> 1191 -11596.35572 1.786984e+03 24 #> 1192 -11701.47339 1.710612e+03 24 #> 1193 -11796.19016 1.621667e+03 24 #> 1194 -11879.01231 1.521552e+03 24 #> 1195 -11948.63366 1.411846e+03 24 #> 1196 -12003.95626 1.294280e+03 24 #> 1197 -12044.10764 1.170707e+03 24 #> 1198 -12068.45458 1.043075e+03 24 #> 1199 -12076.61311 9.133993e+02 24 #> 1200 -12068.45458 7.837231e+02 24 #> 1201 -12044.10764 6.560920e+02 24 #> 1202 -12003.95626 5.325188e+02 24 #> 1203 -11948.63366 4.149523e+02 24 #> 1204 -11879.01231 3.052466e+02 24 #> 1205 -11796.19016 2.051318e+02 24 #> 1206 -11701.47339 1.161868e+02 24 #> 1207 -11596.35572 3.981436e+01 24 #> 1208 -11482.49494 -2.278113e+01 24 #> 1209 -11361.68668 -7.061250e+01 24 #> 1210 -11235.83617 -1.029254e+02 24 #> 1211 -11106.92815 -1.192103e+02 24 #> 1212 -10976.99557 -1.192103e+02 24 #> 1213 -10848.08755 -1.029254e+02 24 #> 1214 -10722.23704 -7.061250e+01 24 #> 1215 -10601.42879 -2.278113e+01 24 #> 1216 -10487.56800 3.981436e+01 24 #> 1217 -10382.45034 1.161868e+02 24 #> 1218 -10287.73356 2.051318e+02 24 #> 1219 -10204.91142 3.052466e+02 24 #> 1220 -10135.29006 4.149523e+02 24 #> 1221 -10079.96746 5.325188e+02 24 #> 1222 -10039.81609 6.560920e+02 24 #> 1223 -10015.46915 7.837231e+02 24 #> 1224 -10007.31062 9.133993e+02 24 #> 1225 6909.86962 1.316298e+04 25 #> 1226 6887.94479 1.351147e+04 25 #> 1227 6822.51609 1.385446e+04 25 #> 1228 6714.61534 1.418654e+04 25 #> 1229 6565.94423 1.450248e+04 25 #> 1230 6378.84737 1.479730e+04 25 #> 1231 6156.27541 1.506634e+04 25 #> 1232 5901.73842 1.530537e+04 25 #> 1233 5619.25061 1.551061e+04 25 #> 1234 5313.26699 1.567883e+04 25 #> 1235 4988.61309 1.580736e+04 25 #> 1236 4650.40890 1.589420e+04 25 #> 1237 4303.98811 1.593796e+04 25 #> 1238 3954.81398 1.593796e+04 25 #> 1239 3608.39319 1.589420e+04 25 #> 1240 3270.18901 1.580736e+04 25 #> 1241 2945.53511 1.567883e+04 25 #> 1242 2639.55148 1.551061e+04 25 #> 1243 2357.06368 1.530537e+04 25 #> 1244 2102.52669 1.506634e+04 25 #> 1245 1879.95472 1.479730e+04 25 #> 1246 1692.85787 1.450248e+04 25 #> 1247 1544.18675 1.418654e+04 25 #> 1248 1436.28601 1.385446e+04 25 #> 1249 1370.85730 1.351147e+04 25 #> 1250 1348.93248 1.316298e+04 25 #> 1251 1370.85730 1.281450e+04 25 #> 1252 1436.28601 1.247151e+04 25 #> 1253 1544.18675 1.213942e+04 25 #> 1254 1692.85787 1.182348e+04 25 #> 1255 1879.95472 1.152866e+04 25 #> 1256 2102.52669 1.125962e+04 25 #> 1257 2357.06368 1.102059e+04 25 #> 1258 2639.55148 1.081535e+04 25 #> 1259 2945.53511 1.064714e+04 25 #> 1260 3270.18901 1.051860e+04 25 #> 1261 3608.39319 1.043176e+04 25 #> 1262 3954.81398 1.038800e+04 25 #> 1263 4303.98811 1.038800e+04 25 #> 1264 4650.40890 1.043176e+04 25 #> 1265 4988.61309 1.051860e+04 25 #> 1266 5313.26699 1.064714e+04 25 #> 1267 5619.25061 1.081535e+04 25 #> 1268 5901.73842 1.102059e+04 25 #> 1269 6156.27541 1.125962e+04 25 #> 1270 6378.84737 1.152866e+04 25 #> 1271 6565.94423 1.182348e+04 25 #> 1272 6714.61534 1.213942e+04 25 #> 1273 6822.51609 1.247151e+04 25 #> 1274 6887.94479 1.281450e+04 25 #> 1275 6909.86962 1.316298e+04 25 ``` ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines circle_outlines %>% * ggplot() ``` ] .panel2-background-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/background_auto_13_output-1.png" width="100%" /> ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines circle_outlines %>% ggplot() + * aes(x = x, y = y) ``` ] .panel2-background-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/background_auto_14_output-1.png" width="100%" /> ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines circle_outlines %>% ggplot() + aes(x = x, y = y) + * geom_polygon() ``` ] .panel2-background-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/background_auto_15_output-1.png" width="100%" /> ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines circle_outlines %>% ggplot() + aes(x = x, y = y) + geom_polygon() + * aes(group = id) ``` ] .panel2-background-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/background_auto_16_output-1.png" width="100%" /> ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines circle_outlines %>% ggplot() + aes(x = x, y = y) + geom_polygon() + aes(group = id) + * aes(fill = factor(id)) ``` ] .panel2-background-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/background_auto_17_output-1.png" width="100%" /> ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines circle_outlines %>% ggplot() + aes(x = x, y = y) + geom_polygon() + aes(group = id) + aes(fill = factor(id)) + * geom_text(data = * cbind(prep, pack), * aes(x, y, size = pop, * label = country, * group = NULL, * fill = NULL)) ``` ] .panel2-background-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/background_auto_18_output-1.png" width="100%" /> ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines circle_outlines %>% ggplot() + aes(x = x, y = y) + geom_polygon() + aes(group = id) + aes(fill = factor(id)) + geom_text(data = cbind(prep, pack), aes(x, y, size = pop, label = country, group = NULL, fill = NULL)) + * theme(legend.position = "none") ``` ] .panel2-background-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/background_auto_19_output-1.png" width="100%" /> ] --- count: false .panel1-background-auto[ ```r gapminder::gapminder %>% filter(continent == "Americas") %>% filter(year == 2002) %>% select(country, pop) -> prep library(packcircles) # center and radius circleProgressiveLayout( prep$pop, sizetype = 'area' ) -> pack # trace outlines pack %>% circleLayoutVertices(npoints = 50) -> circle_outlines circle_outlines %>% ggplot() + aes(x = x, y = y) + geom_polygon() + aes(group = id) + aes(fill = factor(id)) + geom_text(data = cbind(prep, pack), aes(x, y, size = pop, label = country, group = NULL, fill = NULL)) + theme(legend.position = "none") + * coord_equal() ``` ] .panel2-background-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/background_auto_20_output-1.png" width="100%" /> ] <style> .panel1-background-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-background-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-background-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- ## This didn't feel like powerful ggplot2 experience -- ## packcircles -- + ggplot2 -- ## What would integrated, ggcirclepack look like? --- ### in a ggpackcircles::geom_polygon_circlepack(), -- ### the answer 'where?/which?' of the circle isn't defined by a given center, x0y0, -- ## but by its *ids* and *areas*, i.e. ase(id = my_entities, area = their_characteristic) --- ## based on these inputs and an algorithm ggplot2 can compute it's 'where?', the x and y to render. -- ### Working with compute_panel(), in other project ggols --- ## Installation You can install the development version of ggcirclepack from [GitHub](https://github.com/) with: ``` r # install.packages("devtools") devtools::install_github("EvaMaeRey/ggcirclepack") ``` --- count: false .panel1-example-auto[ ```r *library(ggcirclepack) ``` ] .panel2-example-auto[ ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) *library(tidyverse) ``` ] .panel2-example-auto[ ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) *library(magrittr) ``` ] .panel2-example-auto[ ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) *library(dplyr) ``` ] .panel2-example-auto[ ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) *gapminder::gapminder ``` ] .panel2-example-auto[ ``` #> # A tibble: 1,704 × 6 #> country continent year lifeExp pop gdpPercap #> <fct> <fct> <int> <dbl> <int> <dbl> #> 1 Afghanistan Asia 1952 28.8 8425333 779. #> 2 Afghanistan Asia 1957 30.3 9240934 821. #> 3 Afghanistan Asia 1962 32.0 10267083 853. #> 4 Afghanistan Asia 1967 34.0 11537966 836. #> 5 Afghanistan Asia 1972 36.1 13079460 740. #> 6 Afghanistan Asia 1977 38.4 14880372 786. #> 7 Afghanistan Asia 1982 39.9 12881816 978. #> 8 Afghanistan Asia 1987 40.8 13867957 852. #> 9 Afghanistan Asia 1992 41.7 16317921 649. #> 10 Afghanistan Asia 1997 41.8 22227415 635. #> # … with 1,694 more rows ``` ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% *filter(year == 2002) ``` ] .panel2-example-auto[ ``` #> # A tibble: 142 × 6 #> country continent year lifeExp pop gdpPercap #> <fct> <fct> <int> <dbl> <int> <dbl> #> 1 Afghanistan Asia 2002 42.1 25268405 727. #> 2 Albania Europe 2002 75.7 3508512 4604. #> 3 Algeria Africa 2002 71.0 31287142 5288. #> 4 Angola Africa 2002 41.0 10866106 2773. #> 5 Argentina Americas 2002 74.3 38331121 8798. #> 6 Australia Oceania 2002 80.4 19546792 30688. #> 7 Austria Europe 2002 79.0 8148312 32418. #> 8 Bahrain Asia 2002 74.8 656397 23404. #> 9 Bangladesh Asia 2002 62.0 135656790 1136. #> 10 Belgium Europe 2002 78.3 10311970 30486. #> # … with 132 more rows ``` ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% * ggplot() ``` ] .panel2-example-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_07_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + * labs(title = "142 gapminder countries in 2002") ``` ] .panel2-example-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_08_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + * aes(id = country) # req aes ``` ] .panel2-example-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_09_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 * geom_polygon_circlepack(alpha = .5) ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_10_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + * coord_equal() ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_11_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + coord_equal() + * aes(fill = continent) ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_12_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + coord_equal() + aes(fill = continent) + * aes(area = pop) ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_13_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + coord_equal() + aes(fill = continent) + aes(area = pop) + * geom_text_circlepack() ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_14_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + coord_equal() + aes(fill = continent) + aes(area = pop) + geom_text_circlepack() + * scale_size_continuous(range = c(0, 4)) ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_15_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + coord_equal() + aes(fill = continent) + aes(area = pop) + geom_text_circlepack() + scale_size_continuous(range = c(0, 4)) + * facet_wrap(facets = vars(continent)) ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_16_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + coord_equal() + aes(fill = continent) + aes(area = pop) + geom_text_circlepack() + scale_size_continuous(range = c(0, 4)) + facet_wrap(facets = vars(continent)) + * theme(legend.position = "none") ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_17_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + coord_equal() + aes(fill = continent) + aes(area = pop) + geom_text_circlepack() + scale_size_continuous(range = c(0, 4)) + facet_wrap(facets = vars(continent)) + theme(legend.position = "none") + * aes(area = gdpPercap*pop) ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_18_output-1.png" width="100%" /> ] --- count: false .panel1-example-auto[ ```r library(ggcirclepack) library(tidyverse) library(magrittr) library(dplyr) gapminder::gapminder %>% filter(year == 2002) %>% ggplot() + labs(title = "142 gapminder countries in 2002") + aes(id = country) + # req aes # default area is 1 geom_polygon_circlepack(alpha = .5) + coord_equal() + aes(fill = continent) + aes(area = pop) + geom_text_circlepack() + scale_size_continuous(range = c(0, 4)) + facet_wrap(facets = vars(continent)) + theme(legend.position = "none") + aes(area = gdpPercap*pop) + * aes(area = gdpPercap) ``` ] .panel2-example-auto[ ``` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` #> Joining with `by = join_by(id)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/example_auto_19_output-1.png" width="100%" /> ] <style> .panel1-example-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-example-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-example-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- ### Implementation: compute_panel_circle_pack ```r readLines("../R/geom_circle_pack.R")[30:51] #> [1] "compute_panel_circle_pack <- function(data, scales){" #> [2] "" #> [3] " data %>%" #> [4] " mutate(id = row_number()) ->" #> [5] " data1" #> [6] "" #> [7] " if(is.null(data$area)){" #> [8] "" #> [9] " data1 %>%" #> [10] " mutate(area = 1) ->" #> [11] " data1" #> [12] "" #> [13] " }" #> [14] "" #> [15] " data1 %>%" #> [16] " pull(area) %>%" #> [17] " packcircles::circleProgressiveLayout(" #> [18] " sizetype = 'area') %>%" #> [19] " packcircles::circleLayoutVertices(npoints = 300) %>%" #> [20] " left_join(data1) #%>%" #> [21] "" #> [22] "}" ``` --- ### Implementation: ggproto ```r readLines("../R/geom_circle_pack.R")[55:62] #> [1] "" #> [2] "StatCirclepack <- ggplot2::ggproto(`_class` = \"StatCirclepack\"," #> [3] " `_inherit` = ggplot2::Stat," #> [4] " required_aes = c(\"id\")," #> [5] " compute_panel = compute_panel_circle_pack," #> [6] " # setup_data = my_setup_data," #> [7] " default_aes = ggplot2::aes(group = after_stat(id))" #> [8] " )" ``` --- ### Implementation: geom_polygon_circlepack ```r readLines("../R/geom_circle_pack.R")[97:110] #> [1] "geom_polygon_circlepack <- function(mapping = NULL, data = NULL," #> [2] " position = \"identity\", na.rm = FALSE," #> [3] " show.legend = NA," #> [4] " inherit.aes = TRUE, ...) {" #> [5] " ggplot2::layer(" #> [6] " stat = StatCirclepack, # proto object from Step 2" #> [7] " geom = ggplot2::GeomPolygon, # inherit other behavior" #> [8] " data = data," #> [9] " mapping = mapping," #> [10] " position = position," #> [11] " show.legend = show.legend," #> [12] " inherit.aes = inherit.aes," #> [13] " params = list(na.rm = na.rm, ...)" #> [14] " )" ``` --- ## Top wish list item for ggcirclepack: ### More computation under the hood for a count data case. ```r tidytitanic::tidy_titanic %>% head() #> # A tibble: 6 × 5 #> id class sex age survived #> <int> <fct> <fct> <fct> <fct> #> 1 1 3rd Male Child No #> 2 2 3rd Male Child No #> 3 3 3rd Male Child No #> 4 4 3rd Male Child No #> 5 5 3rd Male Child No #> 6 6 3rd Male Child No ``` --- count: false ```r *tidytitanic::tidy_titanic() ``` --- count: false ```r tidytitanic::tidy_titanic() + * ggplot() ``` --- count: false ```r tidytitanic::tidy_titanic() + ggplot() + * aes(x = "all") ``` --- count: false ```r tidytitanic::tidy_titanic() + ggplot() + aes(x = "all") + * geom_polygon_circlepack_count(alpha = .5) ``` --- count: false ```r tidytitanic::tidy_titanic() + ggplot() + aes(x = "all") + geom_polygon_circlepack_count(alpha = .5) + * geom_text_circlepack_count() # automatically labels with count ``` --- count: false ```r tidytitanic::tidy_titanic() + ggplot() + aes(x = "all") + geom_polygon_circlepack_count(alpha = .5) + geom_text_circlepack_count() + # automatically labels with count * aes(linetype = sex) ``` --- count: false ```r tidytitanic::tidy_titanic() + ggplot() + aes(x = "all") + geom_polygon_circlepack_count(alpha = .5) + geom_text_circlepack_count() + # automatically labels with count aes(linetype = sex) + * aes(color = age) ``` --- count: false ```r tidytitanic::tidy_titanic() + ggplot() + aes(x = "all") + geom_polygon_circlepack_count(alpha = .5) + geom_text_circlepack_count() + # automatically labels with count aes(linetype = sex) + aes(color = age) + * aes(alpha = survived) ``` --- count: false ```r tidytitanic::tidy_titanic() + ggplot() + aes(x = "all") + geom_polygon_circlepack_count(alpha = .5) + geom_text_circlepack_count() + # automatically labels with count aes(linetype = sex) + aes(color = age) + aes(alpha = survived) + * facet_wrap(~class) ``` <style> .panel1-titanic-auto { color: black; width: 99%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-titanic-auto { color: black; width: NA%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-titanic-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- ## Other wish list item -- ### Include other circlepacking algorithms? -- ### get feedback from {packcircles} author! -- ### Compare with {ggforce} circle packing, others? --- ## 'Circles are just the best' TLP -- ## If you squint, a Texas and a Circle look like pretty much the same thing. -- ## In ggplot2's eyes, just polygons. --- ### Also experimental: maps and atlasses. -- aes(where = ?) -> xy -- aes(x0y0 = ?) -> xy -- aes(us_state = ?) -- aes(fips = ?) # us county codes -- aes(brain_segment = ?) -- aes(anatomy_tissue = ?) --- # U.S. States - inheriting from geom_polygon - 'computing' state xy perimeter based aes = my_state_var - Ryan Miller tutorial start point. https://evamaerey.github.io/mytidytuesday/2022-11-04-brain/brain.html --- ```r knitr::include_graphics("us_states_fail.png_small") ``` <img src="us_states_fail.png_small" width="50%" /> 'Oh wow cool! That looks like a convenient map layer' --- ### WO extension make a map with geom_polygon tutorial: https://remiller1450.github.io/s230s19/Intro_maps.html -- count: false .panel1-maps_original-2[ ```r library(maps) MainStates <- map_data("state") StatePopulation <- read.csv("https://raw.githubusercontent.com/ds4stats/r-tutorials/master/intro-maps/data/StatePopulation.csv", as.is = TRUE) MergedStates <- inner_join(MainStates, StatePopulation, by = "region") StatePopulation %>% right_join(MainStates) %>% ggplot() + geom_polygon() + aes(x = long, y = lat, group = group, fill = population/1000000) + coord_map(projection = "orthographic", orientation = c(41, -74, 0)) ``` ] .panel2-maps_original-2[ ``` #> Joining with `by = join_by(region)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/maps_original_2_01_output-1.png" width="100%" /> ] --- count: false .panel1-maps_original-2[ ```r library(maps) MainStates <- map_data("state") StatePopulation <- read.csv("https://raw.githubusercontent.com/ds4stats/r-tutorials/master/intro-maps/data/StatePopulation.csv", as.is = TRUE) MergedStates <- inner_join(MainStates, StatePopulation, by = "region") StatePopulation %>% right_join(MainStates) %>% ggplot() + geom_polygon() + aes(x = long, y = lat, group = group, fill = population/1000000) + coord_map(projection = "orthographic", orientation = c(41, -74, 0)) ``` ] .panel2-maps_original-2[ ``` #> Joining with `by = join_by(region)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/maps_original_2_02_output-1.png" width="100%" /> ] <style> .panel1-maps_original-2 { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-maps_original-2 { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-maps_original-2 { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- ## create geom_polygon_state() extension ### compute_state ('algorithm' is to join reference data) ```r StatePopulation <- read.csv("https://raw.githubusercontent.com/ds4stats/r-tutorials/master/intro-maps/data/StatePopulation.csv", as.is = TRUE) MainStates %>% rename(state = region) %>% rename(which_polygon = group) -> continuous_states compute_state <- function(data, scales){ data %>% inner_join(continuous_states, multiple = "all") %>% mutate(x = long, y = lat) %>% arrange(order) %>% # mutate(group = paste(group, ".", which_polygon)) %>% # group_by(which_polygon) %>% data.frame() } ``` --- ## create geom_polygon_state() extension ### ggproto StatPolygonstate ```r StatPolygonstate <- ggplot2::ggproto(`_class` = "StatPolygonstate", `_inherit` = ggplot2::Stat, required_aes = c("state"), # setup_data = my_setup_data, compute_panel = compute_state, default_aes = aes(group = after_stat(which_polygon)) ) ``` --- ## create geom_polygon_state() extension ### the geom itself ```r geom_polygon_state <- function( mapping = NULL, data = NULL, position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) { ggplot2::layer( stat = StatPolygonstate, # proto object from step 2 geom = ggplot2::GeomPolygon, # inherit other behavior data = data, mapping = mapping, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list(na.rm = na.rm, ...) ) } ``` --- count: false .panel1-geom_polygon_state-auto[ ```r *StatePopulation ``` ] .panel2-geom_polygon_state-auto[ ``` #> region population elect_votes #> 1 alabama 4849377 9 #> 2 alaska 737732 3 #> 3 arizona 6731484 11 #> 4 arkansas 2994079 6 #> 5 california 38802500 55 #> 6 colorado 5355856 9 #> 7 connecticut 3596677 7 #> 8 delaware 935614 3 #> 9 florida 19893297 29 #> 10 georgia 10097343 16 #> 11 hawaii 1419561 4 #> 12 idaho 1634464 4 #> 13 illinois 12880580 20 #> 14 indiana 6596855 11 #> 15 iowa 3107126 6 #> 16 kansas 2904021 6 #> 17 kentucky 4413457 8 #> 18 louisiana 4649676 8 #> 19 maine 1330089 4 #> 20 maryland 5976407 10 #> 21 massachusetts 6745408 11 #> 22 michigan 9909877 16 #> 23 minnesota 5457173 10 #> 24 mississippi 2984926 6 #> 25 missouri 6063589 10 #> 26 montana 1023579 3 #> 27 nebraska 1881503 5 #> 28 nevada 2839099 6 #> 29 new hampshire 1326813 4 #> 30 new jersey 8938175 14 #> 31 new mexico 2085572 5 #> 32 new york 19746227 29 #> 33 north carolina 9943964 15 #> 34 north dakota 739482 3 #> 35 ohio 11594163 18 #> 36 oklahoma 3878051 7 #> 37 oregon 3970239 7 #> 38 pennsylvania 12787209 20 #> 39 rhode island 1055173 4 #> 40 south carolina 4832482 9 #> 41 south dakota 853175 3 #> 42 tennessee 6549352 11 #> 43 texas 26956958 38 #> 44 utah 2942902 6 #> 45 vermont 626011 3 #> 46 virginia 8326289 13 #> 47 washington 7061530 12 #> 48 west virginia 1850326 5 #> 49 wisconsin 5757564 10 #> 50 wyoming 584153 3 ``` ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% * mutate(region = region %>% stringr::str_trim() %>% as.factor()) ``` ] .panel2-geom_polygon_state-auto[ ``` #> region population elect_votes #> 1 alabama 4849377 9 #> 2 alaska 737732 3 #> 3 arizona 6731484 11 #> 4 arkansas 2994079 6 #> 5 california 38802500 55 #> 6 colorado 5355856 9 #> 7 connecticut 3596677 7 #> 8 delaware 935614 3 #> 9 florida 19893297 29 #> 10 georgia 10097343 16 #> 11 hawaii 1419561 4 #> 12 idaho 1634464 4 #> 13 illinois 12880580 20 #> 14 indiana 6596855 11 #> 15 iowa 3107126 6 #> 16 kansas 2904021 6 #> 17 kentucky 4413457 8 #> 18 louisiana 4649676 8 #> 19 maine 1330089 4 #> 20 maryland 5976407 10 #> 21 massachusetts 6745408 11 #> 22 michigan 9909877 16 #> 23 minnesota 5457173 10 #> 24 mississippi 2984926 6 #> 25 missouri 6063589 10 #> 26 montana 1023579 3 #> 27 nebraska 1881503 5 #> 28 nevada 2839099 6 #> 29 new hampshire 1326813 4 #> 30 new jersey 8938175 14 #> 31 new mexico 2085572 5 #> 32 new york 19746227 29 #> 33 north carolina 9943964 15 #> 34 north dakota 739482 3 #> 35 ohio 11594163 18 #> 36 oklahoma 3878051 7 #> 37 oregon 3970239 7 #> 38 pennsylvania 12787209 20 #> 39 rhode island 1055173 4 #> 40 south carolina 4832482 9 #> 41 south dakota 853175 3 #> 42 tennessee 6549352 11 #> 43 texas 26956958 38 #> 44 utah 2942902 6 #> 45 vermont 626011 3 #> 46 virginia 8326289 13 #> 47 washington 7061530 12 #> 48 west virginia 1850326 5 #> 49 wisconsin 5757564 10 #> 50 wyoming 584153 3 ``` ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% * ggplot(data = .) ``` ] .panel2-geom_polygon_state-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_03_output-1.png" width="100%" /> ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% ggplot(data = .) + * aes(state = region) # state indicates position instead of x and y ``` ] .panel2-geom_polygon_state-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_04_output-1.png" width="100%" /> ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% ggplot(data = .) + aes(state = region) + # state indicates position instead of x and y * geom_polygon_state() ``` ] .panel2-geom_polygon_state-auto[ ``` #> Joining with `by = join_by(state)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_05_output-1.png" width="100%" /> ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% ggplot(data = .) + aes(state = region) + # state indicates position instead of x and y geom_polygon_state() + * aes(fill = population) ``` ] .panel2-geom_polygon_state-auto[ ``` #> Joining with `by = join_by(state)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_06_output-1.png" width="100%" /> ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% ggplot(data = .) + aes(state = region) + # state indicates position instead of x and y geom_polygon_state() + aes(fill = population) + * coord_map(projection = "orthographic", * orientation = c(41, -74, 0)) ``` ] .panel2-geom_polygon_state-auto[ ``` #> Joining with `by = join_by(state)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_07_output-1.png" width="100%" /> ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% ggplot(data = .) + aes(state = region) + # state indicates position instead of x and y geom_polygon_state() + aes(fill = population) + coord_map(projection = "orthographic", orientation = c(41, -74, 0)) + * geom_polygon_state(data = . %>% * filter(region == "new york"), * color = "red" ) ``` ] .panel2-geom_polygon_state-auto[ ``` #> Joining with `by = join_by(state)` #> Joining with `by = join_by(state)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_08_output-1.png" width="100%" /> ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% ggplot(data = .) + aes(state = region) + # state indicates position instead of x and y geom_polygon_state() + aes(fill = population) + coord_map(projection = "orthographic", orientation = c(41, -74, 0)) + geom_polygon_state(data = . %>% filter(region == "new york"), color = "red" ) + * geom_polygon_state(data = . %>% * filter(region == "colorado"), * color = "green" ) ``` ] .panel2-geom_polygon_state-auto[ ``` #> Joining with `by = join_by(state)` #> Joining with `by = join_by(state)` #> Joining with `by = join_by(state)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_09_output-1.png" width="100%" /> ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% ggplot(data = .) + aes(state = region) + # state indicates position instead of x and y geom_polygon_state() + aes(fill = population) + coord_map(projection = "orthographic", orientation = c(41, -74, 0)) + geom_polygon_state(data = . %>% filter(region == "new york"), color = "red" ) + geom_polygon_state(data = . %>% filter(region == "colorado"), color = "green" ) + * scale_fill_viridis_c(option = "magma", end = .9) ``` ] .panel2-geom_polygon_state-auto[ ``` #> Joining with `by = join_by(state)` #> Joining with `by = join_by(state)` #> Joining with `by = join_by(state)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_10_output-1.png" width="100%" /> ] --- count: false .panel1-geom_polygon_state-auto[ ```r StatePopulation %>% mutate(region = region %>% stringr::str_trim() %>% as.factor()) %>% ggplot(data = .) + aes(state = region) + # state indicates position instead of x and y geom_polygon_state() + aes(fill = population) + coord_map(projection = "orthographic", orientation = c(41, -74, 0)) + geom_polygon_state(data = . %>% filter(region == "new york"), color = "red" ) + geom_polygon_state(data = . %>% filter(region == "colorado"), color = "green" ) + scale_fill_viridis_c(option = "magma", end = .9) + * ggstamp::stamp_point(y = 30.2, x = -97.7, * color = "goldenrod1", * size = 2) ``` ] .panel2-geom_polygon_state-auto[ ``` #> Joining with `by = join_by(state)` #> Joining with `by = join_by(state)` #> Joining with `by = join_by(state)` ``` <img src="circle_pack_and_beyond_talk_files/figure-html/geom_polygon_state_auto_11_output-1.png" width="100%" /> ] <style> .panel1-geom_polygon_state-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-geom_polygon_state-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-geom_polygon_state-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- # U.S. counties, geom_polygon_fips? <img src="circle_pack_and_beyond_talk_files/figure-html/fips-1.png" width="100%" /> --- count: false .panel1-fips-auto[ ```r *library(tidyverse) ``` ] .panel2-fips-auto[ ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) *library(sf) ``` ] .panel2-fips-auto[ ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) library(sf) # Claus on github *fips_geometries <- readRDS(url("https://wilkelab.org/SDS375/datasets/US_counties.rds")) ``` ] .panel2-fips-auto[ ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) library(sf) # Claus on github fips_geometries <- readRDS(url("https://wilkelab.org/SDS375/datasets/US_counties.rds")) %>% * rename(FIPS = GEOID) ``` ] .panel2-fips-auto[ ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) library(sf) # Claus on github fips_geometries <- readRDS(url("https://wilkelab.org/SDS375/datasets/US_counties.rds")) %>% rename(FIPS = GEOID) *US_census <- read_csv("https://wilkelab.org/SDS375/datasets/US_census.csv", * col_types = cols(FIPS = "c") * ) ``` ] .panel2-fips-auto[ ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) library(sf) # Claus on github fips_geometries <- readRDS(url("https://wilkelab.org/SDS375/datasets/US_counties.rds")) %>% rename(FIPS = GEOID) US_census <- read_csv("https://wilkelab.org/SDS375/datasets/US_census.csv", col_types = cols(FIPS = "c") ) # works *fips_geometries ``` ] .panel2-fips-auto[ ``` #> Simple feature collection with 3142 features and 11 fields #> Geometry type: MULTIPOLYGON #> Dimension: XY #> Bounding box: xmin: -3683715 ymin: -2839538 xmax: 2258154 ymax: 1558935 #> CRS: NA #> First 10 features: #> STATEFP COUNTYFP COUNTYNS AFFGEOID FIPS NAME LSAD ALAND #> 1 06 075 00277302 0500000US06075 06075 San Francisco 06 121485107 #> 2 25 025 00606939 0500000US25025 25025 Suffolk 06 150855462 #> 3 31 007 00835826 0500000US31007 31007 Banner 06 1932676697 #> 4 37 181 01008591 0500000US37181 37181 Vance 06 653705784 #> 5 48 421 01383996 0500000US48421 48421 Sherman 06 2390651189 #> 6 50 011 01461762 0500000US50011 50011 Franklin 06 1641633748 #> 7 51 680 01498429 0500000US51680 51680 Lynchburg 25 126842531 #> 8 05 099 00069169 0500000US05099 05099 Nevada 06 1600192985 #> 9 08 014 01945881 0500000US08014 08014 Broomfield 06 85478932 #> 10 16 065 00394803 0500000US16065 16065 Madison 06 1215396379 #> AWATER name state_code geometry #> 1 479107241 California CA MULTIPOLYGON (((-2283315 35... #> 2 160479920 Massachusetts MA MULTIPOLYGON (((2009657 799... #> 3 397069 Nebraska NE MULTIPOLYGON (((-664543.3 4... #> 4 42187365 North Carolina NC MULTIPOLYGON (((1544259 321... #> 5 428754 Texas TX MULTIPOLYGON (((-546533.1 -... #> 6 150930318 Vermont VT MULTIPOLYGON (((1780210 102... #> 7 1428787 Virginia VA MULTIPOLYGON (((1458790 122... #> 8 7254365 Arkansas AR MULTIPOLYGON (((232307.6 -4... #> 9 1411395 Colorado CO MULTIPOLYGON (((-775389.1 3... #> 10 10500827 Idaho ID MULTIPOLYGON (((-1272146 82... ``` ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) library(sf) # Claus on github fips_geometries <- readRDS(url("https://wilkelab.org/SDS375/datasets/US_counties.rds")) %>% rename(FIPS = GEOID) US_census <- read_csv("https://wilkelab.org/SDS375/datasets/US_census.csv", col_types = cols(FIPS = "c") ) # works fips_geometries %>% * left_join(US_census, by = "FIPS") ``` ] .panel2-fips-auto[ ``` #> Simple feature collection with 3142 features and 63 fields #> Geometry type: MULTIPOLYGON #> Dimension: XY #> Bounding box: xmin: -3683715 ymin: -2839538 xmax: 2258154 ymax: 1558935 #> CRS: NA #> First 10 features: #> STATEFP COUNTYFP COUNTYNS AFFGEOID FIPS NAME LSAD ALAND #> 1 06 075 00277302 0500000US06075 06075 San Francisco 06 121485107 #> 2 25 025 00606939 0500000US25025 25025 Suffolk 06 150855462 #> 3 31 007 00835826 0500000US31007 31007 Banner 06 1932676697 #> 4 37 181 01008591 0500000US37181 37181 Vance 06 653705784 #> 5 48 421 01383996 0500000US48421 48421 Sherman 06 2390651189 #> 6 50 011 01461762 0500000US50011 50011 Franklin 06 1641633748 #> 7 51 680 01498429 0500000US51680 51680 Lynchburg 25 126842531 #> 8 05 099 00069169 0500000US05099 05099 Nevada 06 1600192985 #> 9 08 014 01945881 0500000US08014 08014 Broomfield 06 85478932 #> 10 16 065 00394803 0500000US16065 16065 Madison 06 1215396379 #> AWATER name.x state_code state name.y #> 1 479107241 California CA California San Francisco County #> 2 160479920 Massachusetts MA Massachusetts Suffolk County #> 3 397069 Nebraska NE Nebraska Banner County #> 4 42187365 North Carolina NC North Carolina Vance County #> 5 428754 Texas TX Texas Sherman County #> 6 150930318 Vermont VT Vermont Franklin County #> 7 1428787 Virginia VA Virginia Lynchburg city #> 8 7254365 Arkansas AR Arkansas Nevada County #> 9 1411395 Colorado CO Colorado Broomfield County #> 10 10500827 Idaho ID Idaho Madison County #> pop2010 pop2000 age_under_5 age_under_18 age_over_65 female white black #> 1 805235 776733 4.4 13.4 13.6 49.3 48.5 6.1 #> 2 722023 689807 5.5 17.5 10.5 51.8 56.0 21.6 #> 3 690 819 5.2 22.3 19.7 48.7 95.7 0.0 #> 4 45422 42954 6.8 25.4 14.1 53.1 44.2 49.9 #> 5 3034 3186 7.1 30.2 13.3 49.0 88.3 0.5 #> 6 47746 45417 6.3 24.7 12.2 50.4 95.6 0.4 #> 7 75568 65269 6.1 19.6 14.0 53.1 64.4 29.3 #> 8 8997 9955 6.6 23.7 17.7 51.0 65.9 30.7 #> 9 55889 NA 7.1 26.2 9.9 50.4 86.1 1.1 #> 10 37536 27467 9.6 26.0 5.6 51.6 93.9 0.5 #> native asian pac_isl two_plus_races hispanic white_not_hispanic #> 1 0.5 33.3 0.4 4.7 15.1 41.9 #> 2 0.4 8.2 0.0 3.9 19.9 48.1 #> 3 0.4 0.0 0.0 0.7 3.8 95.1 #> 4 0.3 0.4 NA 1.3 6.7 42.1 #> 5 0.8 0.2 0.0 1.5 40.4 58.1 #> 6 1.0 0.5 NA 2.1 1.2 94.9 #> 7 0.3 2.5 0.0 2.2 3.0 63.0 #> 8 0.3 0.3 0.0 1.4 2.4 65.1 #> 9 0.6 6.1 NA 2.8 11.1 79.4 #> 10 0.3 0.9 0.1 1.5 5.9 91.2 #> no_move_in_one_plus_year foreign_born foreign_spoken_at_home hs_grad #> 1 84.0 35.6 45.4 85.7 #> 2 76.7 27.7 36.8 83.1 #> 3 91.3 3.8 3.3 94.1 #> 4 86.9 3.9 6.7 72.6 #> 5 83.9 17.9 31.9 74.4 #> 6 88.1 3.2 4.8 87.8 #> 7 76.9 4.2 6.3 83.1 #> 8 84.7 0.4 1.0 78.3 #> 9 82.8 8.0 12.4 95.3 #> 10 58.1 3.0 9.7 95.2 #> bachelors veterans mean_work_travel housing_units home_ownership #> 1 51.2 33078 29.4 376942 37.5 #> 2 38.9 25698 28.5 315522 36.5 #> 3 25.1 49 25.6 369 66.3 #> 4 10.7 3272 23.1 20082 65.2 #> 5 19.1 233 16.4 1252 78.7 #> 6 21.2 4054 26.6 21588 74.8 #> 7 28.3 6213 16.3 31992 56.3 #> 8 10.7 758 23.8 4563 71.3 #> 9 44.4 4257 26.8 22646 74.4 #> 10 30.0 1079 15.2 11280 52.0 #> housing_multi_unit median_val_owner_occupied households #> 1 66.6 785200 335956 #> 2 80.7 384500 283954 #> 3 7.2 76900 320 #> 4 9.6 98100 16473 #> 5 4.0 80800 971 #> 6 16.9 202800 18482 #> 7 29.8 139100 27875 #> 8 5.9 62300 3782 #> 9 21.7 270500 20116 #> 10 42.2 169700 9868 #> persons_per_household per_capita_income median_household_income poverty #> 1 2.31 45478 71304 11.9 #> 2 2.33 30720 50597 20.6 #> 3 2.25 22042 34063 16.1 #> 4 2.67 17622 34025 27.5 #> 5 3.09 21587 50069 12.9 #> 6 2.54 24767 53623 10.5 #> 7 2.35 21586 37058 22.7 #> 8 2.38 21020 38375 20.0 #> 9 2.63 35836 75590 5.5 #> 10 3.49 13735 35461 32.2 #> private_nonfarm_establishments private_nonfarm_employment #> 1 30490 492689 #> 2 19210 562929 #> 3 6 0 #> 4 878 13177 #> 5 56 263 #> 6 1028 11745 #> 7 2255 54809 #> 8 134 1842 #> 9 1677 29760 #> 10 780 14136 #> percent_change_private_nonfarm_employment nonemployment_establishments #> 1 -11.3 78347 #> 2 -1.4 41757 #> 3 NA 48 #> 4 -10.4 2198 #> 5 -56.9 217 #> 6 0.9 3521 #> 7 -4.7 3556 #> 8 -6.3 423 #> 9 NA 4181 #> 10 15.5 2195 #> firms black_owned_firms native_owned_firms asian_owned_firms #> 1 105030 2.7 NA 24.0 #> 2 55613 11.0 0.7 7.8 #> 3 39 NA NA NA #> 4 3089 25.9 NA NA #> 5 138 NA NA NA #> 6 4754 NA NA NA #> 7 4794 11.6 NA 2.0 #> 8 622 NA NA NA #> 9 6284 1.3 NA 3.9 #> 10 2942 NA NA NA #> pac_isl_owned_firms hispanic_owned_firms women_owned_firms #> 1 0.2 6.6 30.1 #> 2 0.1 8.3 29.5 #> 3 NA NA NA #> 4 NA NA 28.5 #> 5 NA NA NA #> 6 NA NA 23.6 #> 7 NA NA 26.4 #> 8 NA NA NA #> 9 NA 2.0 NA #> 10 NA NA 15.2 #> manufacturer_shipments_2007 mercent_whole_sales_2007 sales #> 1 2077457 10562176 12399960 #> 2 3703400 8914822 7565785 #> 3 0 0 0 #> 4 639233 NA 582116 #> 5 0 NA 10079 #> 6 NA 413283 545346 #> 7 2801602 541451 1665130 #> 8 NA NA 136792 #> 9 2255472 NA 1139808 #> 10 NA 161967 407686 #> sales_per_capita accommodation_food_service building_permits fed_spending #> 1 15516 5039171 779 10707798 #> 2 10381 3795879 480 16051877 #> 3 0 0 0 8130 #> 4 13553 53898 83 408868 #> 5 3486 NA 8 39026 #> 6 11383 39606 161 415662 #> 7 23171 189961 144 1264105 #> 8 14660 3228 1 98360 #> 9 21240 163445 232 442693 #> 10 10971 32041 249 121324 #> area density geometry #> 1 46.87 17179.1 MULTIPOLYGON (((-2283315 35... #> 2 58.15 12415.7 MULTIPOLYGON (((2009657 799... #> 3 746.11 0.9 MULTIPOLYGON (((-664543.3 4... #> 4 253.52 179.2 MULTIPOLYGON (((1544259 321... #> 5 923.04 3.3 MULTIPOLYGON (((-546533.1 -... #> 6 633.71 75.3 MULTIPOLYGON (((1780210 102... #> 7 49.13 1538.2 MULTIPOLYGON (((1458790 122... #> 8 617.84 14.6 MULTIPOLYGON (((232307.6 -4... #> 9 33.03 1691.9 MULTIPOLYGON (((-775389.1 3... #> 10 469.21 80.0 MULTIPOLYGON (((-1272146 82... ``` ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) library(sf) # Claus on github fips_geometries <- readRDS(url("https://wilkelab.org/SDS375/datasets/US_counties.rds")) %>% rename(FIPS = GEOID) US_census <- read_csv("https://wilkelab.org/SDS375/datasets/US_census.csv", col_types = cols(FIPS = "c") ) # works fips_geometries %>% left_join(US_census, by = "FIPS") %>% * ggplot() ``` ] .panel2-fips-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/fips_auto_08_output-1.png" width="100%" /> ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) library(sf) # Claus on github fips_geometries <- readRDS(url("https://wilkelab.org/SDS375/datasets/US_counties.rds")) %>% rename(FIPS = GEOID) US_census <- read_csv("https://wilkelab.org/SDS375/datasets/US_census.csv", col_types = cols(FIPS = "c") ) # works fips_geometries %>% left_join(US_census, by = "FIPS") %>% ggplot() + * geom_sf(aes(fill = home_ownership)) ``` ] .panel2-fips-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/fips_auto_09_output-1.png" width="100%" /> ] --- count: false .panel1-fips-auto[ ```r library(tidyverse) library(sf) # Claus on github fips_geometries <- readRDS(url("https://wilkelab.org/SDS375/datasets/US_counties.rds")) %>% rename(FIPS = GEOID) US_census <- read_csv("https://wilkelab.org/SDS375/datasets/US_census.csv", col_types = cols(FIPS = "c") ) # works fips_geometries %>% left_join(US_census, by = "FIPS") %>% ggplot() + geom_sf(aes(fill = home_ownership)) + * scale_fill_viridis_c() ``` ] .panel2-fips-auto[ <img src="circle_pack_and_beyond_talk_files/figure-html/fips_auto_10_output-1.png" width="100%" /> ] <style> .panel1-fips-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-fips-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-fips-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- --- - inheriting from geom_sf() - 'computing' fips sf geometries column (xy perimeters) based on aes(fips = my_fips_code) - Wilke example start point https://evamaerey.github.io/mytidytuesday/2023-03-10-ggfips/ggfips_w_sf.html --- # Brain seg - inheriting from geom_sf() - 'computing' tissue space based on aes = my_seg_name variable - atlases from ggseg https://evamaerey.github.io/mytidytuesday/2023-03-12-ggbrain-seg-sf/ggbrain_seg_sf.html --- ```r library(gganatogram) a <- gganatogram(data=hgFemale_key, outline = T, fillOutline='#a6bddb', organism='human', sex='female', fill="colour") a + ggstamp::stamp_wash() + geom_path(data = hgFemale_list$brain, aes(x = x, y = -y), color = "red", size = .5, linetype = "dashed") + coord_equal() #> Warning in annotate(geom = "rect", xmin = xmin, ymin = ymin, xmax = xmax, : #> Ignoring unknown aesthetics: x and y #> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. #> ℹ Please use `linewidth` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated. #> Warning: Removed 1 row containing missing values (`geom_path()`). ``` <img src="circle_pack_and_beyond_talk_files/figure-html/unnamed-chunk-12-1.png" width="100%" /> ```r hgFemale_list$liver %>% rename(organ = id) %>% left_join(hgFemale_key) -> liver_with_other_info #> Joining with `by = join_by(organ)` ```