library(tidyverse, warn.conflicts = F)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.0 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.1 ✔ tibble 3.2.0
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth()
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth(n = 5)
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth() +
stat_smooth(geom = "point",
xseq = mtcars$wt,
color = "blue")
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth(method = lm) +
stat_smooth(geom = "point",
xseq = mtcars$wt,
color = "blue",
method = lm)
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth(method = lm, formula = y ~ 1) +
stat_smooth(geom = "point",
xseq = mtcars$wt,
color = "blue",
method = lm,
formula = y ~ 1)
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth(method = lm, formula = y ~ 1) +
stat_smooth(geom = "point",
xseq = mtcars$wt,
color = "blue",
method = lm,
formula = y ~ 1)
formula = "y ~ x + I(x^2)"
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth(method = lm, formula = formula) +
stat_smooth(geom = "point",
xseq = mtcars$wt,
color = "blue",
method = lm,
formula = formula)
formula = "y ~ x + I(x^2) + I(x^3)"
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth(method = lm, formula = formula) +
stat_smooth(geom = "point",
xseq = mtcars$wt,
color = "blue",
method = lm,
formula = formula)
formula = "y ~ x + I(x^2) + I(x^3)"
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth(method = lm, formula = formula) +
stat_smooth(geom = "point",
xseq = mtcars$wt,
color = "blue",
method = lm,
formula = formula)
formula = 'y ~ splines::bs(x, 3)'
method = "lm"
mtcars %>%
ggplot() +
aes(wt, mpg) +
geom_point() +
geom_smooth(method = method, formula = formula) +
stat_smooth(geom = "point",
xseq = mtcars$wt,
color = "blue",
method = method, formula = formula)
mtcars %>%
rename(y = mpg, x = wt) %>%
glm(formula = formula, data = .)
##
## Call: glm(formula = formula, data = .)
##
## Coefficients:
## (Intercept) splines::bs(x, 3)1 splines::bs(x, 3)2 splines::bs(x, 3)3
## 32.25 -12.29 -19.99 -20.38
##
## Degrees of Freedom: 31 Total (i.e. Null); 28 Residual
## Null Deviance: 1126
## Residual Deviance: 203.7 AIC: 160
binomial_smooth <- function(...) {
geom_smooth(method = "glm", method.args = list(family = "binomial"), ...)
}
ggplot(rpart::kyphosis, aes(Age, Kyphosis)) +
geom_jitter(height = 0.05) +
binomial_smooth()
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Computation failed in `stat_smooth()`
## Caused by error:
## ! y values must be 0 <= y <= 1
ggplot(rpart::kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
geom_jitter(height = 0.05) +
binomial_smooth()
## `geom_smooth()` using formula = 'y ~ x'
ggplot(rpart::kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
geom_jitter(height = 0.05) +
binomial_smooth(formula = y ~ splines::ns(x, 2))