count: false .panel1-the_chunk-auto[ ``` r *library(ggtrace) ``` ] .panel2-the_chunk-auto[ ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) *library(ggplot2) ``` ] .panel2-the_chunk-auto[ ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) *mtcars ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> * ggplot() ``` ] .panel2-the_chunk-auto[ ![](cascade_chunk_flipbook_files/figure-html/the_chunk_auto_04_output-1.png)<!-- --> ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + * aes(x = cyl) ``` ] .panel2-the_chunk-auto[ ![](cascade_chunk_flipbook_files/figure-html/the_chunk_auto_05_output-1.png)<!-- --> ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + * stat_count() ``` ] .panel2-the_chunk-auto[ ![](cascade_chunk_flipbook_files/figure-html/the_chunk_auto_06_output-1.png)<!-- --> ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> *p ``` ] .panel2-the_chunk-auto[ ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p *mtcars # from here ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here * head() ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() *layer_data(p, 1) # to here ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here *layer_data_p ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p *ggplot2:::ggplot_build.ggplot ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ``` function (plot) { plot <- plot_clone(plot) if (length(plot$layers) == 0) { plot <- plot + geom_blank() } layers <- plot$layers data <- rep(list(NULL), length(layers)) scales <- plot$scales data <- by_layer(function(l, d) l$layer_data(plot$data), layers, data, "computing layer data") data <- by_layer(function(l, d) l$setup_layer(d, plot), layers, data, "setting up layer") layout <- create_layout(plot$facet, plot$coordinates, plot$layout) data <- layout$setup(data, plot$data, plot$plot_env) data <- by_layer(function(l, d) l$compute_aesthetics(d, plot), layers, data, "computing aesthetics") data <- .ignore_data(data) data <- lapply(data, scales$transform_df) scale_x <- function() scales$get_scales("x") scale_y <- function() scales$get_scales("y") layout$train_position(data, scale_x(), scale_y()) data <- layout$map_position(data) data <- .expose_data(data) data <- by_layer(function(l, d) l$compute_statistic(d, layout), layers, data, "computing stat") data <- by_layer(function(l, d) l$map_statistic(d, plot), layers, data, "mapping stat to aesthetics") plot$scales$add_missing(c("x", "y"), plot$plot_env) data <- by_layer(function(l, d) l$compute_geom_1(d), layers, data, "setting up geom") data <- by_layer(function(l, d) l$compute_position(d, layout), layers, data, "computing position") data <- .ignore_data(data) layout$reset_scales() layout$train_position(data, scale_x(), scale_y()) layout$setup_panel_params() data <- layout$map_position(data) layout$setup_panel_guides(plot$guides, plot$layers) npscales <- scales$non_position_scales() if (npscales$n() > 0) { lapply(data, npscales$train_df) plot$guides <- plot$guides$build(npscales, plot$layers, plot$labels, data) data <- lapply(data, npscales$map_df) } else { plot$guides <- plot$guides$get_custom() } data <- .expose_data(data) data <- by_layer(function(l, d) l$compute_geom_2(d), layers, data, "setting up geom aesthetics") data <- by_layer(function(l, d) l$finish_statistics(d), layers, data, "finishing layer stat") data <- layout$finish_data(data) plot$labels$alt <- get_alt_text(plot) structure(list(data = data, layout = layout, plot = plot), class = "ggplot_built") } <bytecode: 0x7f9af8062b38> <environment: namespace:ggplot2> ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> * body() ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ``` { plot <- plot_clone(plot) if (length(plot$layers) == 0) { plot <- plot + geom_blank() } layers <- plot$layers data <- rep(list(NULL), length(layers)) scales <- plot$scales data <- by_layer(function(l, d) l$layer_data(plot$data), layers, data, "computing layer data") data <- by_layer(function(l, d) l$setup_layer(d, plot), layers, data, "setting up layer") layout <- create_layout(plot$facet, plot$coordinates, plot$layout) data <- layout$setup(data, plot$data, plot$plot_env) data <- by_layer(function(l, d) l$compute_aesthetics(d, plot), layers, data, "computing aesthetics") data <- .ignore_data(data) data <- lapply(data, scales$transform_df) scale_x <- function() scales$get_scales("x") scale_y <- function() scales$get_scales("y") layout$train_position(data, scale_x(), scale_y()) data <- layout$map_position(data) data <- .expose_data(data) data <- by_layer(function(l, d) l$compute_statistic(d, layout), layers, data, "computing stat") data <- by_layer(function(l, d) l$map_statistic(d, plot), layers, data, "mapping stat to aesthetics") plot$scales$add_missing(c("x", "y"), plot$plot_env) data <- by_layer(function(l, d) l$compute_geom_1(d), layers, data, "setting up geom") data <- by_layer(function(l, d) l$compute_position(d, layout), layers, data, "computing position") data <- .ignore_data(data) layout$reset_scales() layout$train_position(data, scale_x(), scale_y()) layout$setup_panel_params() data <- layout$map_position(data) layout$setup_panel_guides(plot$guides, plot$layers) npscales <- scales$non_position_scales() if (npscales$n() > 0) { lapply(data, npscales$train_df) plot$guides <- plot$guides$build(npscales, plot$layers, plot$labels, data) data <- lapply(data, npscales$map_df) } else { plot$guides <- plot$guides$get_custom() } data <- .expose_data(data) data <- by_layer(function(l, d) l$compute_geom_2(d), layers, data, "setting up geom aesthetics") data <- by_layer(function(l, d) l$finish_statistics(d), layers, data, "finishing layer stat") data <- layout$finish_data(data) plot$labels$alt <- get_alt_text(plot) structure(list(data = data, layout = layout, plot = plot), class = "ggplot_built") } ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> body() |> * as.list() # 37 steps ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ``` [[1]] `{` [[2]] plot <- plot_clone(plot) [[3]] if (length(plot$layers) == 0) { plot <- plot + geom_blank() } [[4]] layers <- plot$layers [[5]] data <- rep(list(NULL), length(layers)) [[6]] scales <- plot$scales [[7]] data <- by_layer(function(l, d) l$layer_data(plot$data), layers, data, "computing layer data") [[8]] data <- by_layer(function(l, d) l$setup_layer(d, plot), layers, data, "setting up layer") [[9]] layout <- create_layout(plot$facet, plot$coordinates, plot$layout) [[10]] data <- layout$setup(data, plot$data, plot$plot_env) [[11]] data <- by_layer(function(l, d) l$compute_aesthetics(d, plot), layers, data, "computing aesthetics") [[12]] data <- .ignore_data(data) [[13]] data <- lapply(data, scales$transform_df) [[14]] scale_x <- function() scales$get_scales("x") [[15]] scale_y <- function() scales$get_scales("y") [[16]] layout$train_position(data, scale_x(), scale_y()) [[17]] data <- layout$map_position(data) [[18]] data <- .expose_data(data) [[19]] data <- by_layer(function(l, d) l$compute_statistic(d, layout), layers, data, "computing stat") [[20]] data <- by_layer(function(l, d) l$map_statistic(d, plot), layers, data, "mapping stat to aesthetics") [[21]] plot$scales$add_missing(c("x", "y"), plot$plot_env) [[22]] data <- by_layer(function(l, d) l$compute_geom_1(d), layers, data, "setting up geom") [[23]] data <- by_layer(function(l, d) l$compute_position(d, layout), layers, data, "computing position") [[24]] data <- .ignore_data(data) [[25]] layout$reset_scales() [[26]] layout$train_position(data, scale_x(), scale_y()) [[27]] layout$setup_panel_params() [[28]] data <- layout$map_position(data) [[29]] layout$setup_panel_guides(plot$guides, plot$layers) [[30]] npscales <- scales$non_position_scales() [[31]] if (npscales$n() > 0) { lapply(data, npscales$train_df) plot$guides <- plot$guides$build(npscales, plot$layers, plot$labels, data) data <- lapply(data, npscales$map_df) } else { plot$guides <- plot$guides$get_custom() } [[32]] data <- .expose_data(data) [[33]] data <- by_layer(function(l, d) l$compute_geom_2(d), layers, data, "setting up geom aesthetics") [[34]] data <- by_layer(function(l, d) l$finish_statistics(d), layers, data, "finishing layer stat") [[35]] data <- layout$finish_data(data) [[36]] plot$labels$alt <- get_alt_text(plot) [[37]] structure(list(data = data, layout = layout, plot = plot), class = "ggplot_built") ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> body() |> as.list() |> # 37 steps * sapply(deparse1) ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ``` [1] "{" [2] "plot <- plot_clone(plot)" [3] "if (length(plot$layers) == 0) { plot <- plot + geom_blank() }" [4] "layers <- plot$layers" [5] "data <- rep(list(NULL), length(layers))" [6] "scales <- plot$scales" [7] "data <- by_layer(function(l, d) l$layer_data(plot$data), layers, data, \"computing layer data\")" [8] "data <- by_layer(function(l, d) l$setup_layer(d, plot), layers, data, \"setting up layer\")" [9] "layout <- create_layout(plot$facet, plot$coordinates, plot$layout)" [10] "data <- layout$setup(data, plot$data, plot$plot_env)" [11] "data <- by_layer(function(l, d) l$compute_aesthetics(d, plot), layers, data, \"computing aesthetics\")" [12] "data <- .ignore_data(data)" [13] "data <- lapply(data, scales$transform_df)" [14] "scale_x <- function() scales$get_scales(\"x\")" [15] "scale_y <- function() scales$get_scales(\"y\")" [16] "layout$train_position(data, scale_x(), scale_y())" [17] "data <- layout$map_position(data)" [18] "data <- .expose_data(data)" [19] "data <- by_layer(function(l, d) l$compute_statistic(d, layout), layers, data, \"computing stat\")" [20] "data <- by_layer(function(l, d) l$map_statistic(d, plot), layers, data, \"mapping stat to aesthetics\")" [21] "plot$scales$add_missing(c(\"x\", \"y\"), plot$plot_env)" [22] "data <- by_layer(function(l, d) l$compute_geom_1(d), layers, data, \"setting up geom\")" [23] "data <- by_layer(function(l, d) l$compute_position(d, layout), layers, data, \"computing position\")" [24] "data <- .ignore_data(data)" [25] "layout$reset_scales()" [26] "layout$train_position(data, scale_x(), scale_y())" [27] "layout$setup_panel_params()" [28] "data <- layout$map_position(data)" [29] "layout$setup_panel_guides(plot$guides, plot$layers)" [30] "npscales <- scales$non_position_scales()" [31] "if (npscales$n() > 0) { lapply(data, npscales$train_df) plot$guides <- plot$guides$build(npscales, plot$layers, plot$labels, data) data <- lapply(data, npscales$map_df) } else { plot$guides <- plot$guides$get_custom() }" [32] "data <- .expose_data(data)" [33] "data <- by_layer(function(l, d) l$compute_geom_2(d), layers, data, \"setting up geom aesthetics\")" [34] "data <- by_layer(function(l, d) l$finish_statistics(d), layers, data, \"finishing layer stat\")" [35] "data <- layout$finish_data(data)" [36] "plot$labels$alt <- get_alt_text(plot)" [37] "structure(list(data = data, layout = layout, plot = plot), class = \"ggplot_built\")" ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> body() |> as.list() |> # 37 steps sapply(deparse1) |> * grep(x = _, "l\\$\\w+", value = TRUE) ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ``` [1] "data <- by_layer(function(l, d) l$layer_data(plot$data), layers, data, \"computing layer data\")" [2] "data <- by_layer(function(l, d) l$setup_layer(d, plot), layers, data, \"setting up layer\")" [3] "data <- by_layer(function(l, d) l$compute_aesthetics(d, plot), layers, data, \"computing aesthetics\")" [4] "data <- by_layer(function(l, d) l$compute_statistic(d, layout), layers, data, \"computing stat\")" [5] "data <- by_layer(function(l, d) l$map_statistic(d, plot), layers, data, \"mapping stat to aesthetics\")" [6] "data <- by_layer(function(l, d) l$compute_geom_1(d), layers, data, \"setting up geom\")" [7] "data <- by_layer(function(l, d) l$compute_position(d, layout), layers, data, \"computing position\")" [8] "data <- by_layer(function(l, d) l$compute_geom_2(d), layers, data, \"setting up geom aesthetics\")" [9] "data <- by_layer(function(l, d) l$finish_statistics(d), layers, data, \"finishing layer stat\")" ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> body() |> as.list() |> # 37 steps sapply(deparse1) |> grep(x = _, "l\\$\\w+", value = TRUE) |> * gsub(x = _, ".*l(\\$\\w+).*", "ggplot2:::Layer\\1") ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ``` [1] "ggplot2:::Layer$layer_data" "ggplot2:::Layer$setup_layer" [3] "ggplot2:::Layer$compute_aesthetics" "ggplot2:::Layer$compute_statistic" [5] "ggplot2:::Layer$map_statistic" "ggplot2:::Layer$compute_geom_1" [7] "ggplot2:::Layer$compute_position" "ggplot2:::Layer$compute_geom_2" [9] "ggplot2:::Layer$finish_statistics" ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> body() |> as.list() |> # 37 steps sapply(deparse1) |> grep(x = _, "l\\$\\w+", value = TRUE) |> gsub(x = _, ".*l(\\$\\w+).*", "ggplot2:::Layer\\1") -> *layer_methods ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> body() |> as.list() |> # 37 steps sapply(deparse1) |> grep(x = _, "l\\$\\w+", value = TRUE) |> gsub(x = _, ".*l(\\$\\w+).*", "ggplot2:::Layer\\1") -> layer_methods *gsub(x = layer_methods, ".*\\$", "") ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ``` [1] "layer_data" "setup_layer" "compute_aesthetics" [4] "compute_statistic" "map_statistic" "compute_geom_1" [7] "compute_position" "compute_geom_2" "finish_statistics" ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> body() |> as.list() |> # 37 steps sapply(deparse1) |> grep(x = _, "l\\$\\w+", value = TRUE) |> gsub(x = _, ".*l(\\$\\w+).*", "ggplot2:::Layer\\1") -> layer_methods gsub(x = layer_methods, ".*\\$", "") -> * names(layer_methods) ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ] --- count: false .panel1-the_chunk-auto[ ``` r library(ggtrace) library(ggplot2) mtcars|> ggplot() + aes(x = cyl) + stat_count() -> p mtcars |> # from here head() layer_data(p, 1) -> # to here layer_data_p ggplot2:::ggplot_build.ggplot |> body() |> as.list() |> # 37 steps sapply(deparse1) |> grep(x = _, "l\\$\\w+", value = TRUE) |> gsub(x = _, ".*l(\\$\\w+).*", "ggplot2:::Layer\\1") -> layer_methods gsub(x = layer_methods, ".*\\$", "") -> names(layer_methods) ``` ] .panel2-the_chunk-auto[ ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 ``` ] <style> .panel1-the_chunk-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-the_chunk-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-the_chunk-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> --- ``` r stat_count_Layer <- lapply( layer_methods, \(x) { rlang::inject( capture_fn(p, !!rlang::parse_expr(x), cond = 1) ) } ) ``` --- count: false .panel1-the_chunk2-auto[ ``` r *layer_data_p ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p *p ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ![](cascade_chunk_flipbook_files/figure-html/the_chunk2_auto_02_output-1.png)<!-- --> ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% * ggtrace::capture_fn(Layout$setup) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` function (self = <environment>, data = list(list(mpg = c(21, 21, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26, 30.4, 15.8, 19.7, 15, 21.4), cyl = c(6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4), disp = c(160, 160, 108, 258, 360, 225, 360, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472, 460, 440, 78.7, 75.7, 71.1, 120.1, 318, 304, 350, 400, 79, 120.3, 95.1, 351, 145, 301, 121), hp = c(110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109), drat = c(3.9, 3.9, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3, 3.23, 4.08, 4.93, 4.22, 3.7, 2.76, 3.15, 3.73, 3.08, 4.08, 4.43, 3.77, 4.22, 3.62, 3.54, 4.11), wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44, 3.44, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 2.2, 1.615, 1.835, 2.465, 3.52, 3.435, 3.84, 3.845, 1.935, 2.14, 1.513, 3.17, 2.77, 3.57, 2.78), qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20, 22.9, 18.3, 18.9, 17.4, 17.6, 18, 17.98, 17.82, 17.42, 19.47, 18.52, 19.9, 20.01, 16.87, 17.3, 15.41, 17.05, 18.9, 16.7, 16.9, 14.5, 15.5, 14.6, 18.6), vs = c(0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1), am = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1), gear = c(4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4), carb = c(4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2))), plot_data = list(mpg = c(21, 21, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26, 30.4, 15.8, 19.7, 15, 21.4), cyl = c(6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4), disp = c(160, 160, 108, 258, 360, 225, 360, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472, 460, 440, 78.7, 75.7, 71.1, 120.1, 318, 304, 350, 400, 79, 120.3, 95.1, 351, 145, 301, 121), hp = c(110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109), drat = c(3.9, 3.9, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3, 3.23, 4.08, 4.93, 4.22, 3.7, 2.76, 3.15, 3.73, 3.08, 4.08, 4.43, 3.77, 4.22, 3.62, 3.54, 4.11), wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44, 3.44, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 2.2, 1.615, 1.835, 2.465, 3.52, 3.435, 3.84, 3.845, 1.935, 2.14, 1.513, 3.17, 2.77, 3.57, 2.78), qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20, 22.9, 18.3, 18.9, 17.4, 17.6, 18, 17.98, 17.82, 17.42, 19.47, 18.52, 19.9, 20.01, 16.87, 17.3, 15.41, 17.05, 18.9, 16.7, 16.9, 14.5, 15.5, 14.6, 18.6), vs = c(0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1), am = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1), gear = c(4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4), carb = c(4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2)), plot_env = <environment>) { data <- c(list(plot_data), data) self$facet_params <- self$facet$setup_params(data, self$facet$params) self$facet_params$plot_env <- plot_env data <- self$facet$setup_data(data, self$facet_params) self$coord_params <- self$coord$setup_params(data) data <- self$coord$setup_data(data, self$coord_params) self$layout <- self$facet$compute_layout(data, self$facet_params) self$layout <- self$coord$setup_layout(self$layout, self$coord_params) check_layout(self$layout) lapply(data[-1], self$facet$map_data, layout = self$layout, params = self$facet_params) } <environment: 0x7f9af6db6898> ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% * list(setup = .) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` $setup function (self = <environment>, data = list(list(mpg = c(21, 21, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26, 30.4, 15.8, 19.7, 15, 21.4), cyl = c(6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4), disp = c(160, 160, 108, 258, 360, 225, 360, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472, 460, 440, 78.7, 75.7, 71.1, 120.1, 318, 304, 350, 400, 79, 120.3, 95.1, 351, 145, 301, 121), hp = c(110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109), drat = c(3.9, 3.9, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3, 3.23, 4.08, 4.93, 4.22, 3.7, 2.76, 3.15, 3.73, 3.08, 4.08, 4.43, 3.77, 4.22, 3.62, 3.54, 4.11), wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44, 3.44, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 2.2, 1.615, 1.835, 2.465, 3.52, 3.435, 3.84, 3.845, 1.935, 2.14, 1.513, 3.17, 2.77, 3.57, 2.78), qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20, 22.9, 18.3, 18.9, 17.4, 17.6, 18, 17.98, 17.82, 17.42, 19.47, 18.52, 19.9, 20.01, 16.87, 17.3, 15.41, 17.05, 18.9, 16.7, 16.9, 14.5, 15.5, 14.6, 18.6), vs = c(0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1), am = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1), gear = c(4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4), carb = c(4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2))), plot_data = list(mpg = c(21, 21, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 32.4, 30.4, 33.9, 21.5, 15.5, 15.2, 13.3, 19.2, 27.3, 26, 30.4, 15.8, 19.7, 15, 21.4), cyl = c(6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8, 4), disp = c(160, 160, 108, 258, 360, 225, 360, 146.7, 140.8, 167.6, 167.6, 275.8, 275.8, 275.8, 472, 460, 440, 78.7, 75.7, 71.1, 120.1, 318, 304, 350, 400, 79, 120.3, 95.1, 351, 145, 301, 121), hp = c(110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335, 109), drat = c(3.9, 3.9, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92, 3.07, 3.07, 3.07, 2.93, 3, 3.23, 4.08, 4.93, 4.22, 3.7, 2.76, 3.15, 3.73, 3.08, 4.08, 4.43, 3.77, 4.22, 3.62, 3.54, 4.11), wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44, 3.44, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 2.2, 1.615, 1.835, 2.465, 3.52, 3.435, 3.84, 3.845, 1.935, 2.14, 1.513, 3.17, 2.77, 3.57, 2.78), qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20, 22.9, 18.3, 18.9, 17.4, 17.6, 18, 17.98, 17.82, 17.42, 19.47, 18.52, 19.9, 20.01, 16.87, 17.3, 15.41, 17.05, 18.9, 16.7, 16.9, 14.5, 15.5, 14.6, 18.6), vs = c(0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1), am = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1), gear = c(4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 4), carb = c(4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8, 2)), plot_env = <environment>) { data <- c(list(plot_data), data) self$facet_params <- self$facet$setup_params(data, self$facet$params) self$facet_params$plot_env <- plot_env data <- self$facet$setup_data(data, self$facet_params) self$coord_params <- self$coord$setup_params(data) data <- self$coord$setup_data(data, self$coord_params) self$layout <- self$facet$compute_layout(data, self$facet_params) self$layout <- self$coord$setup_layout(self$layout, self$coord_params) check_layout(self$layout) lapply(data[-1], self$facet$map_data, layout = self$layout, params = self$facet_params) } <environment: 0x7f9af069cba0> ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> *p_Layout ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout *mtcars ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> * stat_count_Layer$layer_data(plot_data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` mpg cyl disp hp drat wt qsec vs am gear carb 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> * stat_count_Layer$setup_layer(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` mpg cyl disp hp drat wt qsec vs am gear carb 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup * list() ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` [[1]] mpg cyl disp hp drat wt qsec vs am gear carb 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> * p_Layout$setup(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` [[1]] mpg cyl disp hp drat wt qsec vs am gear carb PANEL 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 1 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 1 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 1 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 1 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 1 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 1 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 1 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 1 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 1 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 1 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 1 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 1 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 1 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 1 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 1 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 1 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 1 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 1 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 1 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 1 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 1 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 1 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 1 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 1 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 1 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 1 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 1 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 1 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 1 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 1 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 1 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> p_Layout$setup(data = _) |> * el(1) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` mpg cyl disp hp drat wt qsec vs am gear carb PANEL 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 1 3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 1 4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 1 5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 1 6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 1 7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 1 8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 1 9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 1 10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 1 11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 1 12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 1 13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 1 14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 1 15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 1 16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 1 17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 1 18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 1 19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 1 20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 1 21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 1 22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 1 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 1 24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 1 25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 1 26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 1 27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 1 28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 1 29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 1 30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 1 31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 1 32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 1 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> p_Layout$setup(data = _) |> el(1) |> * stat_count_Layer$compute_aesthetics(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` x PANEL group 1 6 1 -1 2 6 1 -1 3 4 1 -1 4 6 1 -1 5 8 1 -1 6 6 1 -1 7 8 1 -1 8 4 1 -1 9 4 1 -1 10 6 1 -1 11 6 1 -1 12 8 1 -1 13 8 1 -1 14 8 1 -1 15 8 1 -1 16 8 1 -1 17 8 1 -1 18 4 1 -1 19 4 1 -1 20 4 1 -1 21 4 1 -1 22 8 1 -1 23 8 1 -1 24 8 1 -1 25 8 1 -1 26 4 1 -1 27 4 1 -1 28 4 1 -1 29 8 1 -1 30 6 1 -1 31 8 1 -1 32 4 1 -1 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> p_Layout$setup(data = _) |> el(1) |> stat_count_Layer$compute_aesthetics(data = _) |> * stat_count_Layer$compute_statistic(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` count prop x width flipped_aes PANEL group 1 11 0.34375 4 1.8 FALSE 1 -1 2 7 0.21875 6 1.8 FALSE 1 -1 3 14 0.43750 8 1.8 FALSE 1 -1 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> p_Layout$setup(data = _) |> el(1) |> stat_count_Layer$compute_aesthetics(data = _) |> stat_count_Layer$compute_statistic(data = _) |> * stat_count_Layer$map_statistic(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` y count prop x width flipped_aes PANEL group 1 11 11 0.34375 4 1.8 FALSE 1 -1 2 7 7 0.21875 6 1.8 FALSE 1 -1 3 14 14 0.43750 8 1.8 FALSE 1 -1 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> p_Layout$setup(data = _) |> el(1) |> stat_count_Layer$compute_aesthetics(data = _) |> stat_count_Layer$compute_statistic(data = _) |> stat_count_Layer$map_statistic(data = _) |> * stat_count_Layer$compute_geom_1(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> p_Layout$setup(data = _) |> el(1) |> stat_count_Layer$compute_aesthetics(data = _) |> stat_count_Layer$compute_statistic(data = _) |> stat_count_Layer$map_statistic(data = _) |> stat_count_Layer$compute_geom_1(data = _) |> * stat_count_Layer$compute_geom_2(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> p_Layout$setup(data = _) |> el(1) |> stat_count_Layer$compute_aesthetics(data = _) |> stat_count_Layer$compute_statistic(data = _) |> stat_count_Layer$map_statistic(data = _) |> stat_count_Layer$compute_geom_1(data = _) |> stat_count_Layer$compute_geom_2(data = _) |> * stat_count_Layer$finish_statistics(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ] --- count: false .panel1-the_chunk2-auto[ ``` r layer_data_p p %>% ggtrace::capture_fn(Layout$setup) %>% list(setup = .) -> p_Layout mtcars |> stat_count_Layer$layer_data(plot_data = _) |> stat_count_Layer$setup_layer(data = _) |> # Detour around Layout setup list() |> p_Layout$setup(data = _) |> el(1) |> stat_count_Layer$compute_aesthetics(data = _) |> stat_count_Layer$compute_statistic(data = _) |> stat_count_Layer$map_statistic(data = _) |> stat_count_Layer$compute_geom_1(data = _) |> stat_count_Layer$compute_geom_2(data = _) |> stat_count_Layer$finish_statistics(data = _) ``` ] .panel2-the_chunk2-auto[ ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ``` y count prop x flipped_aes PANEL group ymin ymax xmin xmax colour fill 1 11 11 0.34375 4 FALSE 1 -1 0 11 3.1 4.9 NA grey35 2 7 7 0.21875 6 FALSE 1 -1 0 7 5.1 6.9 NA grey35 3 14 14 0.43750 8 FALSE 1 -1 0 14 7.1 8.9 NA grey35 linewidth linetype alpha 1 0.5 1 NA 2 0.5 1 NA 3 0.5 1 NA ``` ] <style> .panel1-the_chunk2-auto { color: black; width: 38.6060606060606%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel2-the_chunk2-auto { color: black; width: 59.3939393939394%; hight: 32%; float: left; padding-left: 1%; font-size: 80% } .panel3-the_chunk2-auto { color: black; width: NA%; hight: 33%; float: left; padding-left: 1%; font-size: 80% } </style> <style type="text/css"> .remark-code{line-height: 1.5; font-size: 76%} @media print { .has-continuation { display: block; } } code.r.hljs.remark-code{ position: relative; overflow-x: hidden; } code.r.hljs.remark-code:hover{ overflow-x:visible; width: 500px; border-style: solid; } </style>