Skip to contents

The goal of tidybernoulli creates a framework work with independent, repeated trials in an intuitive, fluid, and computation-friendly way.

A Bernoulli trial is an independent trial with two outcomes (usually success and a failure), where probabilities associated with each new trial are independent of previous trials.

Instead of looking at the realization of single trials and trials histories, we look at probability distributions that are generated by adding Bernoulli trials. Data frames that are generated contain a row for each outcome history and two columns for each trial index – one column with the trial outcome and one column with the associated probability.

Once all the outcome-probability pathways have been built up, summary functions allow us to ask questions about global outcomes; e.g. how likely are we to observe at least one success in 5 fair coin flips. Students will be able to see distributions like the binomial distribution emerge from first principles.

tidybernoulli was inspired by and is complementary to ma206distributions which treats common discrete probability distributions consistent with data requirements for use in with ggplot2 and the rest of the tidyverse.

Installation

You can install the development version of tidybernoulli from GitHub with:

# install.packages("devtools")
devtools::install_github("EvaMaeRey/tidybernoulli")

Then load the package.

library(tidybernoulli)

Single trials

We provide some single Bernoulli trial functions

bernoulli_trial()
#>   outcome prob
#> 1       0 0.75
#> 2       1 0.25
weighted_coin()
#>   outcome prob
#> 1   tails 0.25
#> 2   heads 0.75
fair_coin()
#>   outcome prob
#> 1   tails  0.5
#> 2   heads  0.5

As well as few non-bernoulli events and probabilities

prize_wheel()
#>   outcome           prob
#> 1      $0 9 of 12 slices
#> 2      $1 2 of 12 slices
#> 3      $3  1 of 12 slice

Multiple trials

This is a basic example which shows you how to solve a common problem:

## basic example code
bernoulli_trial()
#>   outcome prob
#> 1       0 0.75
#> 2       1 0.25

trial_init() |>
  add_trials()
#> # A tibble: 4 × 5
#>   history t1_outcome t1_prob t2_outcome t2_prob
#>     <int>      <dbl>   <dbl>      <dbl>   <dbl>
#> 1       1          0    0.75          0    0.75
#> 2       2          0    0.75          1    0.25
#> 3       3          1    0.25          0    0.75
#> 4       4          1    0.25          1    0.25

trial_init() |>
  add_trials() |>
  add_trials() 
#> # A tibble: 8 × 7
#>   history t1_outcome t1_prob t2_outcome t2_prob t3_outcome t3_prob
#>     <int>      <dbl>   <dbl>      <dbl>   <dbl>      <dbl>   <dbl>
#> 1       1          0    0.75          0    0.75          0    0.75
#> 2       2          0    0.75          0    0.75          1    0.25
#> 3       3          0    0.75          1    0.25          0    0.75
#> 4       4          0    0.75          1    0.25          1    0.25
#> 5       5          1    0.25          0    0.75          0    0.75
#> 6       6          1    0.25          0    0.75          1    0.25
#> 7       7          1    0.25          1    0.25          0    0.75
#> 8       8          1    0.25          1    0.25          1    0.25

Summarizing possible outcome histories

library(magrittr)
trial_init(prob = .3) %>%
  add_trials() %>%
  add_trials() %>%
  .$out %>%
  sum_across() %>%
  prod_across()
#> # A tibble: 8 × 9
#>   global_probs global_…¹ history t1_ou…² t1_prob t2_ou…³ t2_prob t3_ou…⁴ t3_prob
#>          <dbl>     <dbl>   <int>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#> 1        0.343         0       1       0     0.7       0     0.7       0     0.7
#> 2        0.147         1       2       0     0.7       0     0.7       1     0.3
#> 3        0.147         1       3       0     0.7       1     0.3       0     0.7
#> 4        0.063         2       4       0     0.7       1     0.3       1     0.3
#> 5        0.147         1       5       1     0.3       0     0.7       0     0.7
#> 6        0.063         2       6       1     0.3       0     0.7       1     0.3
#> 7        0.063         2       7       1     0.3       1     0.3       0     0.7
#> 8        0.027         3       8       1     0.3       1     0.3       1     0.3
#> # … with abbreviated variable names ¹​global_outcome, ²​t1_outcome, ³​t2_outcome,
#> #   ⁴​t3_outcome
library(magrittr)
bernoulli_trial(prob = .5) %>%
  trial_init() %>% 
  add_trials() %>%
  add_trials() %>%
  add_trials(5) %>%
  .$out %>%
  sum_across() %>%
  prod_across()
#> # A tibble: 256 × 19
#>    global_probs global…¹ history t1_ou…² t1_prob t2_ou…³ t2_prob t3_ou…⁴ t3_prob
#>           <dbl>    <dbl>   <int>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
#>  1      0.00391        0       1       0     0.5       0     0.5       0     0.5
#>  2      0.00391        1       2       0     0.5       0     0.5       0     0.5
#>  3      0.00391        1       3       0     0.5       0     0.5       0     0.5
#>  4      0.00391        2       4       0     0.5       0     0.5       0     0.5
#>  5      0.00391        1       5       0     0.5       0     0.5       0     0.5
#>  6      0.00391        2       6       0     0.5       0     0.5       0     0.5
#>  7      0.00391        2       7       0     0.5       0     0.5       0     0.5
#>  8      0.00391        3       8       0     0.5       0     0.5       0     0.5
#>  9      0.00391        1       9       0     0.5       0     0.5       0     0.5
#> 10      0.00391        2      10       0     0.5       0     0.5       0     0.5
#> # … with 246 more rows, 10 more variables: t4_outcome <dbl>, t4_prob <dbl>,
#> #   t5_outcome <dbl>, t5_prob <dbl>, t6_outcome <dbl>, t6_prob <dbl>,
#> #   t7_outcome <dbl>, t7_prob <dbl>, t8_outcome <dbl>, t8_prob <dbl>, and
#> #   abbreviated variable names ¹​global_outcome, ²​t1_outcome, ³​t2_outcome,
#> #   ⁴​t3_outcome

Further summary based on outcome of interest…

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
bernoulli_trial(prob = .5) %>%
  add_trials() %>% 
  add_trials() %>%
  add_trials() %>%
  add_trials(3) %>%
  .$out %>%
  sum_across() %>%
  prod_across() %>%
  group_by(global_outcome) %>%
  summarize(probs = sum(global_probs))
#> # A tibble: 8 × 2
#>   global_outcome   probs
#>            <dbl>   <dbl>
#> 1              0 0.00781
#> 2              1 0.0547 
#> 3              2 0.164  
#> 4              3 0.273  
#> 5              4 0.273  
#> 6              5 0.164  
#> 7              6 0.0547 
#> 8              7 0.00781

Cross-validate work

dbinom(x =  0:7, size = 7, prob = .5)
#> [1] 0.0078125 0.0546875 0.1640625 0.2734375 0.2734375 0.1640625 0.0546875
#> [8] 0.0078125

or…

bernoulli_trial(prob = .5) |>
  add_trials() |>
  add_trials() |>
  to_tsibble()  |>
  group_by(history)  |>
  summarize(hist_prob = prod(prob),
            count_successes = sum(outcome),
            paths = paste(outcome, collapse = ",")) |>
  arrange(count_successes) |>
  group_by(count_successes) |>
  summarize(count_prob = sum(hist_prob))
#> # A tibble: 4 × 2
#>   count_successes count_prob
#>             <dbl>      <dbl>
#> 1               0      0.125
#> 2               1      0.375
#> 3               2      0.375
#> 4               3      0.125

drob quick job on veridical paradox

A #tidyverse simulation to demonstrate that if you wait for two heads in a row, it takes 6 flips on average, while you wait for a heads then a tails, it takes 4 flips on average

library(tidyverse)
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#> ✔ forcats   1.0.0     ✔ readr     2.1.4
#> ✔ ggplot2   3.4.1     ✔ stringr   1.5.0
#> ✔ lubridate 1.9.2     ✔ tibble    3.2.0
#> ✔ purrr     1.0.1     ✔ tidyr     1.3.0
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#> ✖ tidyr::extract()   masks magrittr::extract()
#> ✖ dplyr::filter()    masks stats::filter()
#> ✖ dplyr::lag()       masks stats::lag()
#> ✖ purrr::set_names() masks magrittr::set_names()
#> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

# drob
crossing(trial = 1:1000,
         flip = 1:100) %>% 
  mutate(heads = rbinom(n(), 1, .5)) %>% 
  group_by(trial) %>% 
  mutate(next_flip = lead(heads),
         hh = heads & next_flip,
         ht = heads & !next_flip) %>% 
  summarise(first_hh = which(hh)[1] + 1, 
            first_ht = which(ht)[1] + 1) %>% 
  summarise(first_hh = mean(first_hh),
            first_ht = mean(first_ht))
#> # A tibble: 1 × 2
#>   first_hh first_ht
#>      <dbl>    <dbl>
#> 1     5.90     3.93

It’s about the second chances…

options(pillar.print_max = Inf)
fair_coin(outcome_set = c("T", "H")) %>% 
  select(-prob) %>% 
  trial_init() %>% 
  add_trials() %>% 
  add_trials() %>% 
  add_trials() %>%
  add_trials() %>%
  add_trials() %>%
  to_tsibble() %>% 
  group_by(history) %>% 
  ggplot() + 
  aes(y = history, x = trial) + 
  geom_tile(color = "white") + 
  aes(fill = outcome) ->
baseplot; baseplot


baseplot + 
  geom_point(data = . %>% filter( outcome == "H" & lag(outcome) == "H"), color = "darkred") 


baseplot + 
  geom_point(data = . %>% filter( outcome == "T" & lag(outcome) == "H"), color = "darkred")

16 dolphin trials

bernoulli_trial(prob = .5) |>
  add_trials() |>
  add_trials() |>
  to_tsibble()  |>
  group_by(history)  |>
  summarize(hist_prob = prod(prob),
            count_successes = sum(outcome),
            paths = paste(outcome, collapse = ",")) |>
  arrange(count_successes) |>
  group_by(count_successes) |>
  summarize(prob = sum(hist_prob))
#> # A tibble: 4 × 2
#>   count_successes  prob
#>             <dbl> <dbl>
#> 1               0 0.125
#> 2               1 0.375
#> 3               2 0.375
#> 4               3 0.125

options(scipen = 10)
bernoulli_trial(prob = .5) |>
  add_trials(15) |>
  to_tsibble()  |>
  group_by(history)  |>
  summarize(hist_prob = prod(prob),
            count_successes = sum(outcome),
            paths = paste(outcome, collapse = ",")) |>
  arrange(count_successes) |>
  group_by(count_successes) |>
  summarize(prob = sum(hist_prob))
#> # A tibble: 17 × 2
#>    count_successes      prob
#>              <dbl>     <dbl>
#>  1               0 0.0000153
#>  2               1 0.000244 
#>  3               2 0.00183  
#>  4               3 0.00854  
#>  5               4 0.0278   
#>  6               5 0.0667   
#>  7               6 0.122    
#>  8               7 0.175    
#>  9               8 0.196    
#> 10               9 0.175    
#> 11              10 0.122    
#> 12              11 0.0667   
#> 13              12 0.0278   
#> 14              13 0.00854  
#> 15              14 0.00183  
#> 16              15 0.000244 
#> 17              16 0.0000153


collapse <- function(x, collapse = ", "){
  paste(x, collapse = collapse)
}

bernoulli_trial(prob = .5, outcome_set = c("nope", "fish")) |>
  add_trials(15) |>
  to_tsibble() %>% 
  group_by(history) %>% 
  summarise(history = collapse(outcome),
            sum_successes = sum(outcome == "fish"),
            prob = prod(prob)) %>% 
  group_by(sum_successes) %>% 
  summarise(prob = sum(prob))
#> # A tibble: 17 × 2
#>    sum_successes      prob
#>            <int>     <dbl>
#>  1             0 0.0000153
#>  2             1 0.000244 
#>  3             2 0.00183  
#>  4             3 0.00854  
#>  5             4 0.0278   
#>  6             5 0.0667   
#>  7             6 0.122    
#>  8             7 0.175    
#>  9             8 0.196    
#> 10             9 0.175    
#> 11            10 0.122    
#> 12            11 0.0667   
#> 13            12 0.0278   
#> 14            13 0.00854  
#> 15            14 0.00183  
#> 16            15 0.000244 
#> 17            16 0.0000153

Generalizing and simplifying to binomial equation…

ma206equations::typeset_eq_binomial()
#> ${{_N}C{_k}} \cdot p^kq^{N-k}$
ma206equations::typeset_eq_choose()
#> $n!\(r!*(n-r)!)$

{{_N}C{_k}} \cdot pkq{N-k}

where

C = n!\(r!*(n-r)!)

Quick viz…

ma206distributions::tidy_dbinom(num_trials = 16, single_trial_prob = .5) %>% 
  ggplot() + 
  aes(x = num_successes,
      y = probability) + 
  ma206distributions::geom_lollipop(annotate = TRUE) + 
  labs(title = "prob distributions of successes if random") + 
  ma206equations::stamp_eq_binomial(x = 3, y = .1, size = 8)

Peek into internals of tidybernoulli

readLines("R/bernoulli-trial.R")[150:200]
#>  [1] "                    # objects"                                                           
#>  [2] "                    trial = NULL,"                                                       
#>  [3] "                    index = NULL,"                                                       
#>  [4] "                    out = NULL,"                                                         
#>  [5] "                    out_ts = NULL,"                                                      
#>  [6] "                    as_ts = FALSE,"                                                      
#>  [7] ""                                                                                        
#>  [8] ""                                                                                        
#>  [9] "                    # functions"                                                         
#> [10] "                    init = function(trial = NULL){"                                      
#> [11] ""                                                                                        
#> [12] "                      self$trial <- trial"                                               
#> [13] "                      self$index <- 1"                                                   
#> [14] ""                                                                                        
#> [15] "                      self$out <- cross_trials(self$trial,"                              
#> [16] "                                               num_trials = self$index) |>"              
#> [17] "                        dplyr::mutate(history = dplyr::row_number()) |>"                 
#> [18] "                        dplyr::select(.data$history, dplyr::everything())"               
#> [19] ""                                                                                        
#> [20] "                      invisible(self)          #returns"                                 
#> [21] ""                                                                                        
#> [22] ""                                                                                        
#> [23] "                    },"                                                                  
#> [24] ""                                                                                        
#> [25] "                    update = function(increment = 1){ # a method"                        
#> [26] ""                                                                                        
#> [27] "                      self$index <- self$index + increment"                              
#> [28] ""                                                                                        
#> [29] "                      # displaying"                                                      
#> [30] "                      self$out <- cross_trials(self$trial, num_trials = self$index)  |>" 
#> [31] "                        dplyr::mutate(history = dplyr::row_number()) |>"                 
#> [32] "                        dplyr::select(.data$history, dplyr::everything())"               
#> [33] ""                                                                                        
#> [34] "                      invisible(self)          #returns"                                 
#> [35] ""                                                                                        
#> [36] "                    },"                                                                  
#> [37] ""                                                                                        
#> [38] "                    to_time_series = function(as_ts = FALSE){"                           
#> [39] ""                                                                                        
#> [40] "                      self$as_ts <- as_ts"                                               
#> [41] ""                                                                                        
#> [42] "                    },"                                                                  
#> [43] ""                                                                                        
#> [44] "                    print = function() {  # print method; default is to print everything"
#> [45] ""                                                                                        
#> [46] "                      if(self$as_ts){"                                                   
#> [47] ""                                                                                        
#> [48] "                            print("                                                      
#> [49] ""                                                                                        
#> [50] "                            self$out |>"                                                 
#> [51] "                              tidyr::pivot_longer ("