# A tibble: 20 × 10
speaker_name speaker_affiliation session_type session_title block_track_title
<chr> <chr> <chr> <chr> <chr>
1 Tiger Tang CARFAX regular From Concept… Bridging the gap…
2 Patrick Ten… Meadows Mental Hea… regular The Gonzalez… Building effecti…
3 Camila Saez… Dow, Inc. lightning Coding tools… Lightning talks
4 JP Flores University of Nort… lightning the people o… Lightning talks
5 Maria Grycuk Appsilon regular The Power of… Shiny user inter…
6 Joe Roberts Posit regular How I Learne… Managing packages
7 Natalia And… Pfizer regular Building a C… Pharma
8 Mine Cetink… Posit regular Reproducible… Quarto (1)
9 Vedha Viyash Appsilon lightning Shiny Develo… Lightning talks
10 Jadey Ryan Washington State D… regular Custom Quart… Elevating your r…
11 Erika Tyagi Urban Institute regular Democratizin… End-to-end data …
12 Gordon Shot… Posit regular Diversify yo… Data science wit…
13 Andrew Patt… Infrastructure Lea… regular 10 solutions… The future is Sh…
14 Lydia Gibson California State U… regular How the R fo… Developing your …
15 Thomas Mich… AXI regular Combining R … R or Python? Why…
16 Michael Gar… Medable regular Integrating … Leave it to the …
17 Tesla DuBois Fox Chase Cancer C… regular Solving a Se… Developing your …
18 James Balam… University of Illi… regular Dynamic Inte… Quarto (1)
19 Elaine McVey Chief keynote From Data Co… From Data Confus…
20 Davis Vaugh… Posit lightning dplyr 1.1.0 … Lightning talks
# ℹ 5 more variables: session_date <date>, session_start <dttm>,
# session_length <dbl>, session_abstract <chr>, year <dbl>
r paste(knitr::knit(text = to_closeread, quiet = F), collapse = “”)`
last_plot()$plot_data
NULL
Here is the complete ‘conversation’ with the dataset!
ggplot(data = conf2023) +# the data frame to be plotted is all the exported functions from the aes(id ="All Speakers") +# let's look at a count of all the exported functions first ggcirclepack::geom_circlepack() +# Using circlepacking we automatically have circles size representing the number of observation, i.e. exported functions ggcirclepack::geom_circlepack_text() +# We need to add a label or things are hard to interpretcoord_equal() +# and lets square up the circles ggchalkboard:::theme_glassboard() +# we'll add a themetheme(axis.line =element_blank(), axis.text =element_blank(), axis.ticks =element_blank()) +# And remove axes aes(id = session_type) +# First we ask what packages - github repository names - are presentscale_size(range =c(3.5, 8)) +# size range from defaults 1 to 6 and then we can see last category is keynoteaes(id = session_date) +scale_size(range =8) +# Then let's look at who is writing these exported functionsaes(id = speaker_affiliation) +scale_size() +# Then let's look at who is writing these exported functionsaes(fill =str_detect(speaker_affiliation, "Posit")) +guides(fill ="none") +# Let's just highlight some of the diversity in names# and just delete the fill guide - it's pretty obvious what's being highlightedscale_fill_manual(values =c("lightgrey", alpha("midnightblue", .2))) +# switch out filldata_mutate(var_name ="speaker_affiliation", ifelse(str_detect(speaker_affiliation, "Posit"), "Posit, PBC", speaker_affiliation)) +# consolidatingaes(id = speaker_name) +# Let's look at repeat speakers just Tom Mock duplicatedata_nest(.by =c(speaker_name, speaker_affiliation)) +scale_size(range =1) +# let's nest the data to one speaker-affiliationaes(id =fct_lump_min(speaker_affiliation, min =2, other_level ="Other Affiliation")) +scale_size(range =c(1.25, 6)) +# lump affiliationsdata_unnest() +# Include Toms two talksaes(label =str_wrap(after_stat(id), 12)) +# Wrapping textguides(size ="none")